Disk Operating System
Instructional and Reference Manual

Dos and Don'ts
of DOS

NOTICE

Apple Computer Inec. reserves the right to make improvements in the product
described in this manual at any time and without notice.

DISCLATMER OF ALL WARRANTIES AND LIABILITY

APPLE COMPUTER INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH
RESPECT TD THIS MANUAL OR WITH RESPECT TO THE SOFTWARE DESCRIBED IN THIS
MANUAL, ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR ANY

PARTICULAR PURPOSE. APPLE COMPUTER INC. SOFTWARE IS SOLD OR LICENSED "AS
I5". THE ENTIRE RISK AS TO ITS QUALTITY AND PERFORMANCE IS WITH THE BUYER.
SHOULD THE PROGRAMS PROVE DEFECTIVE FOLLOWING THEIR PURCHASE, THE BUYER
(AMD NOT APPLE COMPUTER INC., ITS DISTRIBUTOR, OR ITS RETAILER) ASSUMES

THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR, OR CORRECTION AND ANY
INCIDENTAL OR CONSEQUENTIAL DAMAGES. 1IN RO EVENT WILL APPLE COMPUTER IHC.

BE LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT IN THE SOFTWARE, EVEN IF APPLE COMPUTER INC. HAS
BEEN ADVISED OF THE POSSIRTLITY OF SUCH DAMAGES. SOME STATES DO ROT ALLOW
THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES OR LIABILITY FOR
INCIDENTAL OR CONSEQUENTIAL DAMAGES, 50 THE ABOVE LIMITATION OR EXCLUSIOR
HAY HOT APFLY TO YOU.

This manual is copyrighted and contains propriecary informationm. All
rights are reserved. This document may not, in whole or parc, be copied,
photocopled, reproduced, tramslated or reduced to any electronic medium or
machine readable form without prior consent, in writing, from Apple
Computer Inc.

©€1979 by APPLE COMPUTER INC.
1926Q Bandley Drive
Cupertine, California 95814
(4P8) 996-101@

All righcs reserved.

Reorder APFLE Product fAZL@812
(830-9911-91)

4

THE DO’S AND DON’TS OF DOS

A MANUAL FOR USING
THE APPLE DISK Il
WITH DOS VERSION 3.2

If many faultes in this book you fynde,
Yet think not the correctors blynde;
If Argos heere hymselfe had beene
He should perchance not all have seene.

Richard Shacklock...1585

Written by Phyllis Cole and Brian Howard
with lots of help from their friends,
and some hindrance from the subject matter,
which kept poing ‘round and “round.

e ———

TABLE OF CONTENTS

vi PREFACE

cHaPTER 1
INSTALLATION AND HANDLING

Unpacking

Connecting the Cable

Installing the Controller
Installing Multiple Disk Drives
Care of the DISK II and Diskettes
Inserting and Removing Diskettes

oV LR L Ll o R

CHAPTER 2
GETTING STARTED

I Background

1@ Special Eeys

11 Booting DOS

12 1f Booting Doesn’t Work

13 1INITializing New Diskettes
15 LOADing and SAVEing with DOS
16 CATALDG

16 What’s in a Name?

17 RENAMEing Files

18 DELETEing Files

18 Recovering from Accidental Resets

CHAPTER 3

EXERCISING OPTIONS

22
24
24
25
20
27
28
29

Drive, Slot, and Volume Optioms

Syntax

INIT

LOAD, RUN and SAVE

DELETE

A Scenario: boot, CATALOG, SAVE, RUN and DELETE
Moving Between Languages: FP and INT

Use of DOS From Within a Program

CHAPTER 4

PLAYING SAFE

34
35
35
36
37
38

Creating a Turnkey System
LOCKE and UNLOCK

VERIFY

Write-Protecting a Disk

Protecting Yourself Against Disaster
Using the COPY Program

CHAPTER D

MORE “HOUSEKEEPING”
INFORMATION

42
43
4é
A

Debugging: MON and NOMON
MAXFILES

TRACE

Using the UPDATE Program

oD NENENEDEBDOEEGEDD

CHAPTER 6
USING SEQUENTIAL FILES

48 Text Files: an Introduction

49 Sequential Files: Some Examples

58 OPENing and CLOSEing Sequential Files

59 WRITEing Sequential Files

64 READing Sequential Files

66 More on Sequential Files: APPEND and POSITION
69 Byte-ing Off More

CHAPTER 7
AUTO APPLE

74 Controlling the Apple via a Text File: EXEC
75 Creating an EXEC File

16 Capturing Programs in a Text File

117 Converting Machine-Language Routines to BASIC
78 MAXFILES and Integer BASIC Programs

78 EXECutive Session

CHAPTER 8
USING RANDOM-ACCESS FILES

82 Random-Access Files: How They Work

82 A Specific Record

84 Multiple Records

86 A Demonstration: The RANDOM Program

88 WRITEing and READing Random-Access Files

CHAPTER 9

USING MACHINE LANGUAGE FILES

92 Machine Language Files
92 BEAVE

93 BLOAD

53 BRUN

94 The RUTS Subroutine

charer 10

INPUT, OUTPUT AND CHAINING

1@ Selecting I/0 Devices: IN{##, PR# and Other Stuff

186 Integer BASIC CHAIN
L#6 Applesoft Chain

ApPenDIX A

FILE TYPES USED WITH DOS

COMMANDS

11¢ By DOS Command
111 By File Type

DOS MESSAGES

114 ONERR GOTO Codes
115 Discussion

appenpix B

g adouEndooeDEDNAOEEEBEN

l

APPENDIX c

FORMAT OF DISKETTE
INFORMATION

124 Overview of the Storage Process

124 WRITEing into a Sequential Text File

126 WRITE=ing into a Random-Access Text File
126 How DOS WRITEs into Text Files: General Procedure
127 Contents of File Sectors

128 The Track/Sector List

129 The Diskette Directory

132 Volume Table of Contents

133 Track Bit Map

135 Track and Sector Allocation Order

136 Retrieving Information from the Disk

136 READing from a Sequential File

137 READing from a Random-Access File

P
MEMORY USAGE AT D

14§ Memory Areas Over—Written When Booting DOS
141 Memory Areas Used by D05 and Either BASIC
142 HIMEM Set By Booting DOS

APPENDIX E

DOS ENTRY POINTS
AND SCHEMATICS

144 DOS Entry Points
145 Circuit Schematic: Disk II Interface
146 Circuit Schematic: Disk I1 Analog Board

apPenpIX F

SUMMARY OF DOS COMMANDS

148
151
151
156
158
161
163

Hotation

File Names

Housekeeping Commands

Access Commands

Sequential Text File Commands
Random=Access Text File Commands
Machine Language File Commands

APPENDIX G

SUMMARY OF DOS PROCEDURES

166
166
166
166
167
167
169
169
179
171
171

174
178
178

Booting DOS

INITializing a Diskette

Recovering from Accidental RESETs

Use of DOS from within a Program

Creating a Turnkey System

Creating and Retrieving Sequential Text Files
Adding Data to a Sequential Text File
Controlling the Apple via a Sequential Text File
Creating and Retrieving BRandom-Access Text Files
Copying a Text File

Chaining in Applesoft

INDICES

General Index
Program Index
Message Index

Inside Back Cover: Index to DOS Command Summaries

Index to NOS Procedure Summaries

vi

PREFACE

This manual has two primary functions. The firat is to teach you how to
use the D05 (Disk Operacing System): the Chapters of the manual use
examples to accompony explanations of how the various DOS commands work.
The second function of the manual is to serve as a reference guide to DOS.
The Appendices, Quick Reference Card, and the Indices (on pages 172, 178
and the inside back cover) were planned with this function in mind.

To use an Apple Disk II, you need am Apple Il computer with at least 16K
of memory =— but 32K is recommended, since the 16K system allows little
memory Space to store programs. For using Apple Disk II with Applesoft
BASIC on the firmware ROM card (Part AZB@9X), your computer still
requires only 16K of memory. For using Apple Disk II with Applesofc on
cassette tape (Part AZTOP@L) or on diskette, your computer must have ac
least 32K of memory.

The Apple Disk IT 1s a “"floppy" disk unit which allows you to store and
retrieve information much more quickly and conveniently than you can with
tape. The information is stored and retrieved from a "diskerre", a small
(about 5-inch diameter) specially coated plastic disk which is permanently
sealed in a square plastic case.

One of the most important advantages to using Disk 11 is that information
is stored and retrieved by a name under which it is filed. A program that
cataloge phone numbers might be saved with an inscruction such as

SAVE PHONE NUMBERS

and recrieved with an equally simple command. The name FHONE NUHBERS
under which the program is filed is & file pame.

The programs that automatically keep track of Files, save and retrieve
information, and do a mulcitude of ocher housekeeping tasks are called the
Disk Operating System, usually shortened to "DOS". Some pecple say

Tdoss” and others say "dee oh ess". Learning to wse DOS and the disk
consists of learning a few special DOS commands described in this manual.
These commands can be used as extensions to either Applescft or Integer
BASIC or machine language programs.

At some places you'll see the symbol

<

preceding a paragraph. This symhol indicates an unusual feature to which
you should be alert.

The symbol

precedes paragraphs describing saituations from which BASIC may ba unable
to recover. You will lose your program, probably have to re-start DOS,
and may have to re-start BASIC.

wvii

*kk NOTE #k%

This manual applies to DOS wersion 3.2 only,
and descriptions may not be correct for DOS
vergions 3.1 and 3.08. If vou do not have DOS
version 3.2, you should get & copy of it from
your dealer before using this manual. The
version number of DO is shown vhen you boot
the Svstem Master diskette. DO5 version 3.2
is on a floppy disgkette, Part @4-Po@2-03.
The UPDATE program, discussed in Chapter 5,
can be uged to convert disks with outdated
versions of DOS to DOS version 3.2.

wviil

&anln LA L. ka3

CHAPTER 1

INSTALLATION
AND HANDLING

Unpacking

Connecting the Cable

Installing the Controller
Installing Multiple Disk Drives
Care of the DISK TI and Diskettes
Inserting and Removing Diskettes

UNPACKING

Your Disk II system consists of seven items:

1} The disk drive (the main box).

2) A printed-circuit card (the controller card)
that plugs into the Apple II.

3) A flat ribbon cable, already fastened
to the disk drive, for connecting
the disk drive to the controller card.

4) A "SYSTEM MASTER" diskette.

3) A blank diskette.

6) A warranty card.

7) Adhesive labels.

&) This manual.

If you have purchased a drive only (for example, as a second drive for
your controller card) your system will include all of the above items
except 2}, the controller card.

Save the packing material in case you wish teo tramsport your disk -- or im
the unlikely event you must return it te your dealer or to the factory for
service. 5Send in the warranty card == not only does this put the warranty
in effect, but Lt puts you on the mailing list for CONTACT, the Apple
users’ newsletter that keeps you informed of updates and new products.

*a% Epeclal Note #%x

Before connecting or disconnecting
ARYTHING
on the Disk IT1 or Apple 11
TURN OFF THE POWER.
This is a must.

CONNECTING THE CABLE

In use, the disk drive will be connected to the controller card by the
flat, ribbon=like cable. One end of this ribbon cable is already fastenad
to the disk drive. If this i3 vour first disk drive, the connector at the
end of the ribbon cable from this drive should be acttached to the upper
set of pins on the controller card. This set of controller card pins is
labelled "DRIVE 1"-

wkd Caution #hwn

If the cable from the disk drive to the controller card is not plugged
inte the controller card correctly, considerable physical damage can be
done to the disk drive unit and ice electronics. To assure correct
assembly, be sure to plug the ribbhon cable into the controller card
before installing the controller card into the computer. Two
installation tips follow. First, don't jam the cable between the
connector and the controller card. When the cable is plugged into the
controller card correctly, the cable should exit from its connector om
the side of the connector that is away from the controller card, as

g g i e REDEESEERES

shown in the photograph. Second, make aure that all the pins of the
controller card’s connector go into the matching holes in the ribbon
cable’s connector. By making the connection before inscalling the card,
you cen actually see that all the pins are going into the holes
correctly.

dwdiak del

Connéecting the Cable to the Controller

If you are Installing a second disk drive, you should connect the ribbon
cable from the second drive to the lower set of pine on your controller.

This set of pins is labeled "DRIVE 2". Take the same care attaching chis
connector an you did wich che firsc.

INSTALLING THE CONTROLLER

Te install the Disk II controller card, which you have already connected
to the disk drive via the ribbon cahle, you will simply plug the
controller card into a socket insfde the Apple I1, as follows:

1. Turn off the power switch at the back of the Apple II. This ia
important to prevent damage to the computer. IE the power is on, ramoval
or ingertion of any card could cause permanent damage to both the card and
the Apple II.

2. Remove the cover from the Apple II. This i1s done by pulling up on the
cover at the rear edge (the edge Farthest from the keyboard) until the two
cormer fastemers pop aparc. Do not continue to lift che rear edge, but
slide cthe cover backward until it comes free.

3- Inside the Apple II, across the rear of the circuit board, there is a
row of eight long, narrow sockete called "slots". The leftmost one
(looking at the computer from the keyboard end) is slot g, and the
rightmost one is slot #7. Locate slot #6, one socket to the left of the
rightmost socket. The controller card may be placed in any slot except
slot #@, the leftmost. However, Apple’s standerd location for the disk

controller card is slot #6, and most Apple software (and this manual) is
written with that location in mind.

4. BE SURE THE POWER IS OFF BEFORE YOU INSERT OR REMOVE ANY CARD FROM THE
COMPUTER. Insert the “Eingers" portiom of the controller intoe sloc #6.
The "fingers" portion will enter the socket with some friction and will
then seat firmly. Since the fingers make electrical contact, it is a pood

idea to keep your fingers from touching them. Before installation, you
may wish te use rubbing aleohol to, elean the [ingers on the board (and,

optionally, your own fingers if you're so inclined).

Inserting the Controller Card

5. Adjust the ribbon cable so it lays flat and passes over one of the
areas between the vertical openings in the back of the Apple 11 case, as
shown in the drawing. When the 1id is inscalled it will clamp down the
cable and act as a strain rellef.

Cable Placement

6. Replace the cover of the Apple I1; remember to start by sliding the
front cdge of the cover into place. Press down on the two rear corners
until thay pop into place.

7+ The Disk Il controller is installed, and the Apple 11 may now he
turned on. Place the disk drive in a convenient locaclion, usually
alongside of or on top of your Apple II.

—

——

INSTALLING MULTIPLE DISK DRIVES

Each controller card can be used with two disk drives, one attached to the
upper set of pins, labeled "DRIVE 1", and the second attached to the lower
set of pins, labeled "DRIVE 2". Your first disk drive should be attached
to the DRIVE 1| pins and the second to DRIVE 2 pins on the card in slot #5.
The third and fourth drives should be actached to the DRIVE 1 and DRIVE 2
pins, respectively, on a card in slot #5, the fifth and sixth drives
attach to the DRIVE 1 and DRIVE 2 pins on a card in slot #4, and so on.

If you have multiple drives, it is a good idea to label the front of each
drive with its slot and drive number since your programs will refer to the

disks by those numbers. Adhesive labels are provided in an envelope with
your drive.

CARE OF THE DISK Il AND DISKETTES

The Disk II drive, unlike cthe Apple II, iz a mechanical device, with
motors and moving parts. Therefore it 18 somewhat more delicate tham the
computer. Rough handling, such as dropping the drive, or having things
drop on it, can couse it to malfunction. The drive should not be placed
beside or on @ TV set, since the strong magnetic flelds put out by TVs may
cause damage to the magnetic properties of the drive. If in doubt, locate
disk drives at least 2 feet from any TV set.

Each diskette is a small (about 5-inch diamecter) plastic disk coated so
that information may be stored on and erased from ics surface. The
coating is similar to the megnetic coating on recording tape. The
diskette is permanently sealed in & square black plastic cover which
protects it, helps keep it clean and allows it to spin freely. This
package is never opened.

The term "floppy" comes from the fact that the diskette is flexible.
0Older computer information atorage devices that worked on similar
principles used rigid disks. While the diskette (and its plastic covar)
are somevhat flexible, actwally bending the diskette can damage it. The
diskette cover contains both lubricants and cleaning agents to extend
trouble free operation -- treat covers with respect.

Wever let anything touch the brown or gray surface of the diskette itself.
Handle the diskette by the black plastic cover only. When a diskette is
not in use, keep it in the paper pocket that it came in. These pockets
are treated co minimize static build=-up which attracts dust. It is best
to store disketrtes vertically when they are not in use. Vinyl notebooks
especially made for this purpose are convenient.

Diskettes hold a tremendous amount of information: a single diskette can
hold over 931,888 bits of information. An individual bit of informatiom,
therefore, occupies a very small portion of the diskette. An invisible
gcratch on the surface of the diskette, or even a fingerprint, can cause
errors. Do not place diskettes on dirty or greasy surfaces; do not lat
them collect dust.

To write on a diskette label, use a FELT TIP pen. Do not press hard. It
is best not to write on & label attached to a diskette, but to write on
the separate label, then attach it to the diskette.

Keep disketres away from magnetic fields. This means to keep them away
from electric motors and magnets; they should not be placed on top of
electronic devices such as television sets. They may be temporarily laid
on the Apple 1T ar the Disk IT1.

Digkettes are sensitive to extremes of temperature. Keep diskettes out of
the sun, and away from other sources of heat that can cause them to warp
and/or lose data. On hot days, car trunks (or dashboards) can be diskette
killers. Diskettes operate satisfactorily up to 125 degrees Fahrenheit
(51.7 Celsius), which is not very hot. The first evidence of hear damage
is a warped or bent black plastic cover.

With reasonable care a diskette will give you an average life of 4@ hours
-= which is a lot, when you consider the few seconds it takes to LOAD most

programs. With just & little bit of carelessness, a diskette may give you
no service at all.

R
@)

w10

Ho=No“s

INSERTING AND REMOVING DISKETTES

Using a disk drive is far quicker and easier than using a cassette
recorder, however some care is necessary to protect the diskettes. The
drive itself must alse be handled with some care. The drive door is
opened by pulling outward on its bottom edge. The diskette is then
slipped into the slot with the label upwards, as shown in the
photograph. The edge of che diskette with the oval cutout in the
diskette’s aguare plastic cover should enter the drive first. The edge
of the diskette with the label should enter the drive last.

A Cood
RULE OF THIMB

Hold a diskette with your right thumb over the label:
that precty much insures the correct orientation
when you put the diskette in the drive.

g B e EDEEEREGEOEEOD OO

Inserting a Diskette

Push the diskette gently uncil the diskecte is entirely into the drive.

Do not hend the diskette] If it is pushed in too hard, the diskette can
be permanently damaged. Close the drive door by pushing it dowm again.

The two metal fingers (which can be seen inside the slot when the drive

door is closed) should just clear the diskette as the door closes.

A diskette is removed by opening che drive door and pulling the diskecce
carefully our of the drive. The act of opening the disk drive door lifts
the "head" off the disk. If you plan to lesve an unused diskette in a

drive for several hours, it"s a good idea to open the door so the head
won"t rest on the diskette.

©

NEVER remove a diskette while the dreive®s "IN USE" light is on. This may
permanently damage the diskette, and is alwost sure to destroy the
information on it. In such & case, the diskette can wsually be re-used,
but vou won"t be able to recover the lost informacion.

——— —= — L

CHAPTER 2
GETTING STARTED

1 Background

1§ Special Keys

11 Booting DOS

12 1If Booting Doesn’t Work

13 INITializing New Diskettes
15 LOADing and SAVEing with DOS
16 CATALOG

16 What®s in a Name?

17 RENAMEing Files

18 DELETEing Files

18 Recovering from Accidental Resets

BACKGROUND

Learning to use the disk and its operating system consists of learning a
few special instructions, several of which are straightforward extensions
of familiar BASIC instructions. Thia manual assumes that you"re familiar
with the Apple IT, and feel comfortable writing simple BASIC programs.

To learn how to use the Apple II and Integer BASIC, consult the Apple IT
BASIC Programming Manual (Apple Product #AZLO@ASX). To learn how to use
Applesoft BASIC, conmsult the Applesoft I1 BASIC Programming Reference
Hanual (Apple Product #AILOP@G). The Applesoft manual assumes you re
already familiar with the Apple IT and simple BASIC programming. If
you're not familiar with eicher manual, we will wait here while you learn
about the Apple II, before going on to learn about DDS.

* % W

Throughout the manual are listings of programs that illustrate how to use
DOS. Most of these programs are in Applesoft; a few are in Integer BASIC.
Sometimes the changes needed to convert an Applesoft program to Integer
BASIC are mentioned; other times, they are not. Consult Appendix M in the
Applesoft manual for details on the differences between programs writcen
in Integer BASIC and Applesoft BASIC.

A little bit of hands=on expericnce is worth a lot of reading. Once your
disk drive is hooked up and the computer is turmed on, follow each of
these descriptions by actually trying out the procedures on your Apple II.

Put cthe Apple II inte BASIC -- either Integer BASIC or Applesoft. Flace
the System Master diskette into the drive. The diskette should be
labelled P@4-PP@2-XK. The last two digits are indicated by X's, since it
doesan”t matter what they are. If you have more than one drive, use Drive
1. This section of the manual only deals with one drive and assumes that
you"ve followed the standard conventions, putting the controller into slot
86,

With the disk drive attached, and the disketcte in the drive, and the disk
drive door closed, you will find that the Apple IT performs just as it did
without the disk. MNothing is changed. Tt i{s as if the disk drive were
net there. And, as far s the Apple Il is concerned, the disk drive is
not connected yet: a special command must be given to inform the computer
that the disk drive and the new DOS instructions are available.

Even though DOS commands look like BASIC commands, they do not always

follow the same rules. For example, multiple DOS commands canpot be put
on one line, separated by commas. The SYNTAX ERROR message results.

SPECIAL KEYS

Sometimes this manual uses the curly brackets { and } to enclose the
names of special keys which you are supposed te press on the Apple II
keyboard.

10

f ool dEENnNEs N ERNEONRNEN

{RETURN} means you should press the key marked "RETURN". Press the RETURN
key after each instruction.

{RESET} means press the key marked "RESET". A press of the RESET key will
put you into the MONITOR program, which uses * as its prompt character.

{E5C} means press the key marked "ESC". "ESC" originally meant "escapa",
but nowadays has other uses.

{CTRL} is & bit different. It means vou should press the key marked
"CTRL" (which stands for control) and continue holding it down

while you type another key. For example, {CTEL)}C means type the "C" key
while you are holding down the CTRL key. Sometimes use of the control is
indicacted in another way: CTRL=C and {CTRL}C both mean the seme thing.

hhk NOTE *kk
Characters typed while holding down the CTRL key
do not appear on the s&crecn.

BOOTING DOS

The process of adding the D05 commands to the BASIC in your Apple IT is
called booting the disk. The disk may be booted from Integer BASIC,

from Applesoft or from the Monmitor. There are various ways you can use to
boot DO5. From Integer BASIC or Applesoft, the PRfs and INfs commands
(see your Applescft manual) may be used. From the Monitor, “control
commands" using the CTRL key may be used. Once you get DOS booted, It's
all the same DO5: it deoesn’t matter how you got there.

In the examples below, the lower-case letter s stands for the number of
the Apple II slot in which your disk controller card is located. The
standard location for the controller card is slot #6 (see Chapter 1,
Installing the Controller). After any of the following commands, you must
press the RETURN key.

From Integer BASIC (whose prompt character is >)
you can use cither of these commands to boot the disk:

You type: FRia Fxomple: PRER
or: IN#a Example: INf&
From Applescft (whose prompt character is] 1}
you can uge either of these commands to boot the disk:
You type: PRffs Example: PR#G
or: INfs Example: IN#G

From the Moniter (whose prompt character is # 1§,
you can use any of these commands to boot the disk:

You type: Cs@dG Exampler CO@EQG
or: s{CIRL)}K Example: 6{CTRL K
or: s{CTRL}P Example: 6{CTRL}P

1

In the rest of this manual, when you are to re-start the DOS in this
manner we will simply say: "bootr the DOS" or "boot the disk". Both
expressions (very popular among computer users) mean the same thing.
"Boot" is short For the word "bootstrap" and the term is from the
expression "to pull oneself up by one’s bootstraps;" but a more thorough
etymology would be out of place here. In any case, it does pot mean to
kick the disk, even if vou do feel in such a mood from time to time.

Now try booting POS Erom your System Master diskette. 5Start by putting
your Apple IT in BASIC =— either Integer BASIC or Applesoft will do. Be
sure the disketrte is properly inserted. HNext cype

FPRVG

and press the RETURN key as usual. From now on, it will be assumed that
you will press the RETURN key after eech instruction.

Once you press the RETURN key, the red "IN USE" light will come on, the

disk will make whirring and clacking noises (don’t be alarmed —— it”s not
getting ready to Ely away) end in less than 1@ seconds, a message will
appear. The message should be similar to the following:

If you now try to use BASIC, you will find that most commands atill
operate normally and, aside from the message suddenly appearing, the Apple
11 seems unchanged. What has happenead is this: a few new commands have
been introduced, and a few old ones have new capabilities. Two changes
have been made that are not obvious, however:
1} The HIMEM pointer to the highest memory location you may use

has been reset to accomodate the DOS program.
2} Your Apple 1T may have loat some of ite high-resolution

graphics capabilities, depending on the amount of memory

in your computer.
For details, see Appendix D on DOS Hemory Usage.

IF BOOTING DOESN'T WORK
If you can’t successfully boot your System Master diskette, re-read the
manual carefully == that cures 99% of all problems.

This isn”t likely, but if your unit was shipped in a Sherman tank or some
such, the connectors inside the disk drive may have worked a bit loose.

If you are at all squeamish about handling che insides of your drive, your
dealer will be glad to check it out.

If you enjoy gecting vour fingers into the works, you can turn the
computer off, and disconnect the drive from the controller. Loosening the
four screws on the bottom of the drive allows the mechanism to slip
forward out of the case. Tighten the connectors by pushing them gently
onte the circuic boards. Re-assemble the unit and it will probably now
work. If this first aid doesn”t work, ses your dealer. Don"t make any
adjustments.

12

g HEEHEOESEHHEHDEEENOEEEEEEBEDNEO

The System Master thac comes with this manual is a very special diskette:
it contains programs that allow you to copy an entire diskette (1f you
have two disk drives), update any diskette that has an earlier versiom of
DOS, and more. Programs that demonstrate various capabilities of DO5 are
also included on the diskette and discussed in the manual.

Take the System Master diskette from the drive, and replace it with the
other blank diskette supplied with your drive. Now try an experiment.
Get BASIC going, then type

FRIB

and watch what happens. The red IN USE light comes on, and the disk drive
makes a few clackery noises, then it just keeps whirring softly and
quietly and it doesn’t stop. You'll have to press the RESET key to stop
it (mormally, this is a BAD idea, but these circumstances aren t normal).
It“s a good idea to open the disk drive door before pressing the RESET
key, since that 1ifts the head of the disk drive off the surface of the
diskerte.

What happened was this: your Apple II went on a fruitless unending search
for information on a blank disketce (on a clear disk you can seek
forever...}. When a new diskette is manufactured, it contains no
information at all, like a blank tape purchased for a tape recorder. To
operate in the computer, there must be special information placed on the
diskette: the diskette must be initialized.

If you've been keeping up with the hands-on part of the example, your
blank diskecte is in the drive and you just pressed the RESET key. Now
take out the blank diskerce, replace it by the System Master diskette, and
close the door of the drive. Get the computer into BASIC and type

PR

again. You should again get the message you got before when you booted.
Once more the DOS commands have been added to BASIC.

The INIT command can be used to INITialize a “slave" diskette. Slove
diskertas are memory-size dependenc: the size of a system on which a
dishettp is INITialized determines what size system can use the disk. If
a slave diskette is created on o 32K system, then it can be used only on
IZK EYStams or lnrgur. But on lar;er systems, only 3ZK of memory will be
used. After INITializing a slave diskerte, you can use the U?DhTE 3.2
program {see Chapter 5) to cranform your slave diskette into & "master"

diskette whose DOS is self-relocating so that mesory is used efficiently.

The INIT command requires the use of a BASIC program called the "greeting”
propgram aince it greets you: each time you boot the diskerte the program
will be run automatically. The greeting program is commonly named "HELLO™
but vou could call it "BONJOUR" or "BUENOS DIAS" or whatever wou like. It
helps keep life simple to use a standard mame for grecting programs as you
IHNITialize diskettes.

Here®s a step=by=step guide to INITializing a slave diskette. We assume
DOS is already booted as described above.

1} Remove the System Master from your drive and replace it with
o blank diskette.

13

2) Type NEW, then type a greeting program. Here is a simple
sample of a greeting program:

% REM GREETING-1 PROGRAM

18 PRINT "SLAVE DISKETTE CREATED
oM 22K SYSTEM"

28 PRINT "BY AMY DOARKS ON & AUGU
ST issa*

28 END

You should supply your own name, system size, the current
date and other information to help you quickly and easily
determine the diskette’s history and slave/master status.
You may RUN the program to see if it does what you expect.

3) Once the program is satisfactory, type this instruction:
JNIT HELLO
When you press the RETURN key, the diskette will spin for nearly
two minutes, making clacks and lictle whispery noiszes every
now and then. The appropriate prompt character (e.g.] for
Applesofc) will be displaved when INITialiration is complete-

4) When the disk quiets dowm and the IN USE light goes off,
remove the diskette and label it. The label should say
something like
32K SLAVE DISKETTE CREATED 8 AUGUST 1988
so that just by looking at it you know it isn”t blank.

Put aside the System Master diskette supplied by Apple Computer. Put it
where it won't be damaged by heat, physical scress (kids? dogs?) or
magnetic objects. And where it won”t get lost. It should be treated
especially carefully, since it contains many useful programs.

Once a diskette has been INITialized, it will be referred to as a slave
diskette. To lebel your slave diskette, you had to take it ocut of the
drive. Put it back in and try booting it: the message in your PRINT
statements should appear. If you followed the model given above, the
scraen should say:

SLAVE DISKETTE CREATED ON 32K SYSTEM
BY AMY DOARKS ON 8 AUGUST 1390

Since the once-blank diskette now can boot, you know that it has been
INITialized correctly- From this point on you will use che newly
INITislized slave diskette for experimentation. You cannot do some of the
procedures to be demonstrated below on the System Master, because the
diskette is "write protected”, as discussed in Chaprer 4.

If you have purchased additfonal blank diskettes, it would be a good idea
to INITialize a few of them now.

g HEEHEAEEREHBEENDEANENEE OO EEME

LOAD-ING AND SAVE-ING WITH DOS

Boot the system with vour initialized diskette. Type

HEW

to make sure no programs are in memory. This will erase your greeting
program (which is LOADed and RUM when you boot DOS) from memory (but not
from the diskette).

Now type this simple program:

3 REM COUNT FROGRAM
18 FOR I = 1 TO 1@

28 PRINT I,

38 NEMT 1

49 END

RUN it once or twice to make sure that it works as you expect. In
Applesoft, when the program is RUN you"l1l see this:

4 = B
B o
18

For reference purposes, call this program ONE TO TEN, since it counts from
one to ten. To store this program on the diskette, type the instruction
SAVE ORE TO TER

When you complete the command by pressing the RETURN key, the disk will
whirr for a few seconds, and the program will be saved.

If you had typad

SAVE

without any name, the program would have been saved on cassette tape, as
usual (assuming you had operated the tape recorder as described in the
BASIC Programming Manual).

To prove that the program has been SAVEd on diskette, do the following.
First, type

LIST

then

RUN

to see the program is still in memory and still operates properly. This
demonscrates that using D05 to SAVE a program on a disketcte doesn’t affect
the program in any way.

How type

HEW

then

LIST

There will be no program left at all == it disappesrcd when youo typed HEW.
To really make sure the program is dead, turn off the computer. 7You can
even take the diskette out and put it (gently) back in again. Turn the
computer back on again, get fnto BASIC and boot the DOS. Type HEW (which
erases the HELLD program), and them LIST. Nothing there? Right.

15

How type
LOAD ONE TO TEN

and the disk will whirr for about two seconds. LIST the program: it is
revived. RUN it, and you will find it in perfect health. That is all
there is to 5AVEing and LOADing programs from disk: it"s just like using
the cassette tape except that a file name is used, snd it's faster.

CATALOG

You stored the program ONE TO TEN on your diskette. Actually, you had
already stored another program. To see what programs are stored om a
given disk, type the command

CATALOG

and a list of all the programs on the diskette will appear. Right now
your diskette’s catalog should look like this, if your programs were
written in Integer’ BASLC:

T P92 HELLO

I @42 ONE TO TEM

The letter "1" in the left column means that the programs are in Integer
BASIC; before names of Applesofr programs you®ll see an "A". Besides
BASIC program files, there are also other kinds of files that can be
stored, and they will be explained in Chapters & through 9. The numbers
after the file-type letter represent the length of the stored program. In
this case, @@2 diskecte "sectors" were required to store the program.
Each diskette sector can store up to 256 bytes of information. The
shortest possible file, an empty text file (see Chapter 6), requires @@l
sector to record certain "housekeeping” informatiom. In all, a diskette
can store 4@3 sectors of programs and other files. Lastly, each entry in
the catalog contains the name of the program. See Appendix C for details
on how informacion is stored on the diskettes.

When a file exceeds 255 sectors, the length reported for that file by
CATALOG starts over again ac @@d.

<

There is no way to tell from looking &t the CATALOG which program is the
greeting program. S50 it helps if you always give the same name to your
greeting program. To change the name of the greeting program, see the
discussion of the UPDATE program, in Chapter 3.

Sometimes you’ll have more programs on a diskette tham will fit on the TV
secreen at one time. CATALOG will cawse the first 18 programs to be
listed. When you're ready to see the other programs on the diskette,
press any key except the RESET key, CTRL key or the SHIFT keys.

WHAT'S IN ANAME?

File names must be from 1 to 3 characters inm length; DOS will truncate
longer file names to 3¢ characters. A file name must begin with a letter.
Any typeable character, except the comma (,) may appear in the name.

16

dF AU EHHEHEHEESEEEEENSEESEEEHEEEDBD

Here are some legal file names:

SOMNAMBULISTICS

ONE TO TENW

HIRES 34

THE QUALITY OF MERCY: UNSTRAINED

Here & few names that will not work {and reasons why):

1 10 1@ (begins wicth a digic)
HI THERE, BABE (containg a comma)

INEPT EXCESS VERBIAGE DISQUALIFIES RAMES (will be cut to 3@ characters)

Although the name of the last file will be cut to 39 characters when
displayed by CATALOG, you can, if your fingers can take it, type the
entire name when LOADing or RUNning, and all will work correctly.

Every line in the catalog represents a “file". The BASIC program you
stored {8 an example of a file. The rules given here for file names also
apply to the names of programs.

< p

L~

If a control character is accidentally (or even purposefully) typed into a

name, that character will not appear on the screen when you get a catalog.
For example, if you type {CTRL}T instead of plain "TI" in the name

"AGATHA", the catalog liscing would appear to be

AGAIA

However, if you tried to LOAD thar file by cyping

LOAD AGAHA

the computer would reply

FILE NOT FOUND

even though the name you typed seemed to be identical to the name in the

catalog. S0 be careful: don"t inadvertently put control characters in

file names. (Although, heh heh, it‘s a clever way to keep you out of my

bank records if all files have secret control characters ambedded in

them...) The File Names section of Appendix F contains tips on how to

find out what control characters are imbedded in file names.

RENAME-ING FILES

For one reason or another, you'll occcasionmally want to change the name of
a file. Suppose you get tired of typing the file name ONE TO TEN and
decide to call the file COUNT. Just cype

RENAME OME TO TEN, COUNT

and after a moment of whirring you'll again see the BASIC prompt
characcer. MNow type

CATALOG

to verify that all went as planned.

-

The RENAME command does not check to see whether the new name you'Te

using already exists or not, so {t'a entirely possible that wou can RENAME
until all files on a diskecce have the same name...s most undesirable and
confusing situacion that is best avoided.

17

DELETE-ING FILES

It is easy to remove files from the diskette. Type

CATALOG

again to aee the two files that are on your digketre. How type

LOAD COUNT

(assuming you changed the file name as shown above]) to get that program
into memory. Delete this program from the diskette by the instruction
DELETE COUNT

and test that your deletion has worked by typing

CATALOG

Only the greeting program == probably called HELLO —— is left. Since the
prograa COUNT is in memory (that”s why you LOADed it), you can place it
back onto the diskerce with the familiar command

SAVE COUNT

Take a look at the catalog to see that the program is again on the
diskette.

If you try to DELETE a file that‘s not on the diskette, you'll receive the
FILE ROT FOUND

RECOVERING FROM ACCIDENTAL RESETS

Suppose you're without the DOS in either Integer BASIC or Applesoft.

{If Applescfc is in firmware, we assume the switeh on the card is set for
Applesofc). If you accidenmtally strike the RESET key, you can recover
with vour program intact by using CTRL-C. The DOS also has recovery
procedures that will usuwally preserve your program and data.

If you have already booted D05, and then press RESET, you get the Moniter
{ *) prompt. To return to DOS and the BASIC you left, type

InPc

Remember that‘s a ®zero, not the letter O, between the lectters D and G.

I1f recovery to DOS does not work, and the program still LISTs, all is not
lost: save the program on tape (you did remember to keep your tape drive
for {ust such am emergency, didnt you?). Then at your leisure you cam
boot DOS, LOAD the program from tape, and SAVE it on a diskecte.

@

1f you accidentally (or intentionally) hit the RESET key while the disk's
red "IN USE" light is on, the information on your diskette may be
clobbered. Problems are most likely to occecur if this happems when you're
putting information onte the diskette using a SAVE, BSAVE, or WRITE
comsand. Tn the event that it is clobbered, you probably wen’t be able to
recover your programs from the diskectte. If nothing else works, you can
re=initinlize the diskette and use it again, but INITializing destroys
all the files on the diskette.

If your IN USE light scays on for several minutes but you don”t hear the
usual disk sounds, your system may be "hung". Pressing RESET may be the
omly way to turn off the light so you can restarc che system.

H i M EdUHEEDEHEHETDNHETEBEENEEE B EHEEEEEDN

A diskette can be parcially clobbered, so thact it will not boot. However,
in such a circumstance, you can sometimes boot another diskecte, then
LOAD programs from the partially clobbered diskette and save them on an
un=damaged diskette. Or you may find that the UFDATE program (see Chapter
5) may help you save the day and your programs at the same time.

19

AEpm AN ARNEAREERNERNAEERN AN EOAAEREAN |

20

22

24
24
25
26
27
28
29

CHAPTER 3
EXERCISING OPTIONS

Drive, Slot, and Volume Options

Syntax

INIT

LOAD, RUN and SAVE

DELETE

A Scenario: boot, CATALOG, SAVE, RUN and DELETE
Hoving Between Languages: FP and INT

Use of DOS From Within a Program

21

DRIVE, SLOT AND VOLUME OPTIONS

Host DOS commands allow you to specify a number of options, such as which
disk drive you are using, which slot containe the disk controller for that
drive, and a "volume number" for the disk.

The disk drive option allows you to operate with more than one drive.
Each controller has the ability to control either one or two disk drives.
Normally, instructions refer to drive 1. This is the default drive
seleccion: if wou don"t specify a drive, drive 1 will be used. IE you
wish to specify drive 2, vou use the notation D2 separated from the file
nameé or other disk options by a comma. For example, to initialize a
digkatte in drive 2, you could use the instruction

INIT HELLO, D2

After drive 2 has been specified, mll further disk commands refer to
drive 2 until drive 1 is again specified. Drive 2 is now the default

drive. After the above INITialization, the command
CATALOG

will list the files stored on the diskecte in drive 2. To spacify drive
1, you use the notation D1 separated from the file name by a comma. For
example,

CATALOG, DI

will show you the contents of the diskerce in drive 1, and change the
default drive number back to 1.

If more than two drives are in wse, then sdditionsl controllers are
required. These are placed in different slots than the first controller
(which {6 customarily in slot number 6). You can specify slot n (where n
is a digit from | to 7) with the notation Sn separated from the file name
or other disk cptions by a comma. For example, to initislize a diskette
in drive 1 acctached to a contreller im slot 5, you would use the
insctruction

INIT HELLO, %5, DI

The file name must come firsc, but order of the cpticns is not important.

The default slot number is the one you used when booting the DOS. Once a
different sloc number has been specified, it becomes the default slot
number until it is explicitly changed.

<>

After using a DOS command with a %lot parameter naming a slot that doesn’t
contain a disk controller, you get an
1/0 ERROR
message, and all appears to be fine. But D05 now thinks the default slot
number is the bad slot number, and that the disk thac isn’t connected to
that slot is scill running. Even if the next DOS command specifies the
right sloc, it waits in limbo forever for the non-existent disk co
stop running the last command. If you have no program in memory that you
care to save, simply re-boot BOS. To recover with your program intact, do
this:
1) Reset the default sloc by cyping

CATALDG, S&

where 5 1s the correct slot number.

2) When the system hanga, press the RESET key.

22

1) Type
@G

and all should be fine again.

<

DOS must be booted from a diskette in Drive 1 not Drive 2.

The wvolume number option can be used to protect diskettes from being
accidentally written over. For example, suppose your have a
diskette-based inventory system, where each month"s records is on a
differant diskecte with a unique volume pusher. Then when you go to enter
information for the month of January, you must be sure to specify the
correct volume number. Otherwise, the information won“t be written to the
diskette and you"ll get a

VOLUME MISMATCH

MESSage .

A "wolume number" may be assigned to a diskette when it is INITialized,
using the notation Vn separated from the file name or other disk options
by 8 comma. For instance, to inircialize a diskerte using the name "START
UP" for tha greating program (the program that i run each time the
disketra is booted), where the diskette is in drive 2 of a controller in
glot 5, assigning che diskecte a volume number of 128, vou would use the
com=and

INIT START UP, D2, 55, V128

<>

e

The volume number of a diskette may not be changed withour re-INITializing
the diskette.

The drive number, slot number and volume number options may appear in any
order. The above command is equivalent to

INIT START UF, V128, 85, D2

and to

INIT START UP, S5, V128, D2

and so on.

The volume number of & diskette musc be an integer from 1 through 254. If
ne volume number is specified wich INIT, a defaulr volume number of 254 is
asgigned to the diskecte.

4

b

The commeand

INIT HELLO, V@

does not give any message, but assigns the diskette the default volume
number 2Z534.

All DOS commands can specify the volume number, if you wish DOS to check
that the volume number on the diskette agrees with the V oprion. If you
do not specify any volume number, or if vou specify volume zero, or if
you type "V" without a number, DOS will ignore the diskette’s volume
number. If you accidentally specify an incorrect volume number, the
aystem will reject it with the message

VOLUME MISHMATCH

23

Volume mismatch errors cannot occur when you ask to see the CATALOG. In
case you wish to know the volume number of a diskette, it is given at the
head of the CATALOG liscing.

Additional discussion of options iz found where each command is
introduced. Also, the information is concisely summarized for each
command in the Command Summary Appendix and on the Quick Reference Card
accompanying this manual. The following section explains how to interpret
these concise summaries.

SYNTAX

Syntax refers to the structure of a computer command, the order and
correct form of the command’s various parts. A simple notation is used to
describe the syntax of each DOS command. TItems in brackects ([and]) are
optional; optional perts of a D05 command may be specified in any order.
CAPITAL lecters and commas must be typed as shown; lower case letters
stand for items you must supply. In specifying the syntax for [0S

commands ,

atands for a file name

stands for drive number == either 1 or 2.

stands for slot number =- 1 through 7.

atands for volume number == 1 through 254, usually.

A disgkette’s volume number may not be B. Bpecilying a
yoluse number of @ in a disk command is a "wild card" that
tells DOS to ignore the valume number on the disketce.

-

Additional abbreviacions used in this manual are susmarized at the start
of the Command Summary Appendix.

Any numerical comstant (the drive number, volume number, etc.) in a DOS
command can be expressed in hexadecimal notation by preceding the hex
digics wicth a dollar sign. If you don”t koow what hexadecimal notation

is, ignore the preceding statement -- you need”t understand hex notation
to understand this manual.

INIT

The syntax for the INIT command is
INIT £ [,W) [,5s] [,Dd]

where the brackers indicate options which may or may not be included. The
example

INIT HELLO, V17, D2
can be interpreted as follows.

The command name "INIT"™ ia in upper case, and must be typed exactly as
showvn. The lover case "f", for file name is replaced by the legitimate
file name "HELLO". Mextr the oprional volume number is indicated: firsc
comes a comma, then the upper case "V". The "v" for volume number was
arbitrarily replaced by 17 for this example. The brackets around ", 58"
indicate thar specifying the slot number is optional for the INIT comsand:

24

l][ll.]l]l]l]ll[lﬂlll]l]lll]l][lllLlll[][l[ll]ll

in this example it"s omicced so D05 will use the default slot number. The
drive option is included: the comma and upper case "D™ musc be as shown;
the lowar case "d" is replaced by 2 in this example.

For details on using INIT, see "INITializing Mew Diskettes" in Chapter 2.

LOAD, RUN AND SAVE

LOADing, EUNning and SAVEing programs on the disk 18 similar to the
corresponding operations using the cassette (except that programs are
referenced by file name). Everything goes at least ten times faster, and
you never need to press buttons te play, record or rewind. It is all
automatic. There are many additional abilities that the disk brings as
well, such as the catalog of programs and the automatic running of
programe without user intervention. Saving dacta (on text flles -- see
Chapter 6) is also very easy.

It°s a good idea to hang on to vour cassette tape system for trading
programs and as back-up storage for vital programs and data (although
experience shows that disk storage is even more reliable than cassette
storage of programs and data).

If you have a program in BASIC, and you wish to call it hENRY, then the
com=and

SAVE HENREY

will save it on the diskette. If you have more than one drive, HENRY
normelly would be saved on the drive from which you booted DOS (the
defaulrt drive, unless you specified a different drive after booting). You
can specify dreive number, volume number and slot number as with the INIT
command. For example, to SAVE a file called AGATHA on drive 1 of the
controller in slot 2, where the volume number of the diskette is 214, you
could use the command

SAVE AGATHA, D1, 82, VZl4

As before, the three options can be put in any order. If you had omitted
the volume number option, AGATHA would have been saved just the sama,
bless her, but DOS would not have checked that the diskette was volume
214,

Program names are file names, and must follow the file name rules: they
may he up to 3P characters long, and must start with a letter. They may
include any characters you can type except commas or control characters.
Here are some valld names for files:

CHECKBOOK

THE QUALITY OF MERCY

HIRES34

HOW: HEAR THIS!

To LOAD a program named AGATHA, use the command
LOAD AGATHA

and the program of that name, if there is one in the catalog, will be
loaded. To cest if AGATHA is loaded, gee if she can walk a straight line.

1f you want AGATHA to RUN after she’s LOADed (poor thing) you can, of

course, use the commands
LOAD AGATHA

25

then

RUN

But there’s a way to do it in just one step:

RUN AGATHA

is 8 DO5 command thet first LOADs the specified file, then RUNs it.

Here"s the syntax for the SAVE and LOAD and RUN commands:
SAVE £ [,5s] [,Dd] [,Vv]
Loan £ [,8s] [,Dd] ([,Vv]
RuM £ [,8s] [,Dd] (,¥v]

Examples follow:

SAVE OUR HAPFY HOME, DI, 57
LOAD UF

RUN AMOK, S7

=

If, when you try to SAVE a program, you get a SYNTAX ERROR message,
either vou have made a typing error, or DOS isn't booted. First, try
re-typing the command. If DOS was origimally booted, use

nec

to try to recover. If DO5 ign't booted -— DON'T BOOT IT. Booting DOS
+ First; save the program on tape, using

the usual cassette

SAVE

command. HNow boot DDS. MNext, use the usuwal cassette

LOAD

command, to bring the program back into your APPLE I1°s memory from the
tape. HNow you will be able to SAVE it on disk.

or MMEJ_J_.;ELthm_. or_if there is no diskette in the
drive, or if the door is open, the message
1/0 ERROR

{1/0 stands for Input or Output) will appear when you £ty te SAVE or LOAD
using DOS. Check all the items listed, and correct the problem. You
don"t need to re-boot DD5. Try again.

If you use the command

LOAD HEWNRY

and HENRY is mot the name of o program on the diskette in the drive, then
you get this message

FILE ROT FOUND

Look at the diskette’s catalog to find the program”s exact file name. All
characters and spaces must be typed exactly as they appear in the file
name shown in the catalog.

To eliminate any file that youw would rather mot have on your diskerte, the
command

DELETE

can be wsed. The syntax is

DELETE £ [,8s] [,Dd] [,V¥v]

26

For example, the command
DELETE EXCESS, V34, D2, 51

delactes a file named EXCESS from a diskette with wvolume number 34, which
is placed in drive Z of the controller inm slot 1.

Sectors on a diskette are "set free" only when a file is DELETEd.

A SCENARIO: BOOT, SAVE, RUN, CATALOG AND DELETE

Suppose you're running Integer BASIC and the System Master diskette is in
your disk drive. Here’s a dislog as it might appear on the screen of vour

APPLE II. The parts you type are underlined, although they do not
appear that way on the TV screens

*PRIFG

(the above will clear the sereen and you®ll see the following:)

[At this point, you would insert the Slave diskette you
INITialized earlier, since it is not write protected.]

CATHL OG

27

JDELETE DEM

*CRTHLOL

ISK VOLUME Z54
I 692 HELLO

1 882 COUNT

MOVING BETWEEN LANGUAGES: FP AND INT

Suppose you've been using Integer BASIC, and wou decide to write a program
in APPLEBOFT, or to use the computer as a calculator with floating point
numbers (numbers with decimal points). To invoke APPLESOFT without
clebbaring DOS, ctype

FFP

(that"s all there is te it) and in a few seconds APPLESOFT will be up and
running. The FP stands for "Floating Point", of course. (If for some
reason Applesoft dsn”t available -- it"s not in firmware or on the
diskette that”s in use == then the message

LANGUAGE NOT AVAILABLE

will be displayed.) The syntax for the command is

FP [,5a] [,Dd]

where the optional Slet and Drive parameters allow to to specify the drive
containing Applesoft on a diskette.

If you"ve been using APPLESOFT and DOS, you can type

INT

(for "Inceger BASIC") te return to Integer BASIC with DOS intact. The
suntax for this command is simply

INT
without any parameters. You"ll gencrate a
SYNTAX ERROR

message if you try to use the D or 5 parameters with INT.

<

If you type
INT s

while in Integer BASIC, you will lose any program in memory. Similarly,
if you type
gE oIt

while in Applesoft, you'll lose any program in memory.

When you switch from Integer BASIC to Applesoft or wice versa, you ‘11 lose
ayr program you happen to have ‘I.n MEmOLY s

28

A U HHHEBEENEHNEELI AN NN EEHEERER

In addition to moving back and forth between the Apple’s BASICs, you may
wish to enter the Monitor and be able to use DOS commands. To do so from
either Applesoft or Integer BASIC, type

_CALL =131

and you should get the Honitor prompt character, * . To return to

whichever BASIC you started from with your program and DOS intact, Cype
IDEG

=

2

From the Monitor, you ma* also type

INT

to return to Integer BASIC, or

FP

o return to Applesoft; in either case, DOS will scill work buct any

memo have disappeared.

©

If you get a
PROGRAM TOO LARGE
message when trying to execute an

FP

command , type

INT

first, to reset the system. Then type
FP

&

Even though your diskette contains the Integer BASIC program named
APFLESOFT, do not type

RUN APPLESOFT

If you do, Applesoft will seem to be running fine until you press RESET,
say, and try to re-enter Applesoft. Then, since the DOS thinks you are in
Integer BASIC (because APPLESOFT was an Integer BASIC program), you will
be in trouble.

To move the APFLESOFT program from one diskette to another, simply
LOAD APPLESOFT

from whatever diskette it“s on, then place the diskette you wish to
contein Applescoft in the drive and type

SAVE APPLESOFT

USE OF DOS FROM WITHIN A PROGRAM

Very often it's wseful to be able to execute a DOS command from within a
BASIC program. For example, you may wish your greeting program on & disk
to print out the contents of the disk by doing a CATALOG command. Many
D08 commands can be executed from inside a BASIC program. This is dome by
PRINTing a string that comsists of a CTRL=D followed by the command.

Here is an Applesoft program that, Lf used as a greeting program, will

cause the information in the PRINT statements in lines 2@ and 3) to appear
on the screen, followed by a list of files in the CATALOG.

29

5 REM GREETING PROGREAM

18 % = CHR¥ (4): REM CHEF.S
IS CTRL-L

28 PRINT “SLAVE DISKETTE CRERTED

ON ZIK 5YSTEM”

A PRINT "BY AMY DORIKS ON 8 RUGU
ST 19g6"

48 FRINT D= “CRTALOG

S8 EMD

The recommended way to do this in Applesofr is i1llustrated in the above
program. First the string 0§, consisting only of a CTRL-D, is created
using the CHRS funcrion in the firsc line of the program. Later it can be
used A5 1in line 4@

4ff FRINT D& “CATALOG"

Wote the semi-colon after the D5 and the quotation marks around the DOS
command. The semi-colon is oprional in Applesoft PRINT statements, so if
a program has many [0S commands in PRINT statements, you may find it saves

typing time and memory space to simply omit them, and use the form
4@ PRINT DS“CATALOG"

In Applesoft, you can use the CHRS function to specify CTRL-D

¥ DS=CHRS(4}: REM CTRL-D

But you need to recall that the ASCIT code for CTRL-D is &4, so & REMark
may be wseful. (The CHES function is not avallable in Integer BASIC.)

In either Integer BASIC or Applesoft you may define CTRL-D by
typing the characters

Ds,-ll

then typing the letter D while holding down the CTRL key, and then typing
the quotation mark, ™. MNote that the CTRL-D does not print on your

TV sereen. The final command will appear as

D=

Since control characters do not print, it’s often a good idea to follow
with a REMark to remind you of what actually is in the string. Here's che
above program written in Integer BASIC:

19 [D$="": REM IHERE 15 AN THVISIBL
E CTRL-D BETWEEN THE GQUOTES

28 PRINT "SLAVE DISKETTE CREATED ON

22K SYSTEM"

3B PREINT "BY AMY DOAKS ON 8 RAUGUST
198"

49 PRINT D# "CATALOG"

S END

Only one DOS command may be used in a PRINT scatement. The PFRINT
statement must begin wich the CTRL-D and end with the DOS command.

<

Using the right-arrow to copy a BASIC statement containing an invisible
control character will erase the comtrol character.

30

H g NP EEEHEDENEBHEHARENEPHONEAE AN

©,

In DOS commands executed by a program, the D$ must be preceded by a RETURN
or it will be ignored. RUHning this program

5 REM TESTCATALOG PROGRAM
18 DE = "": RFEM THERE 1= AN 1NV
ISIBLE CTRL-D BETWEEN THE &U
OTES
28 -PRINT "TEST "_
I8 PFRINT D¥: "CATALOG"
48 EMND
will cause
TESTCATALDG

to be displayed, since the semi-colon suppresses the RETURN at the end of
che PRINT command in lime 2@. To correct this, and cause the DOS command
CATALDG to be executed when the program is RUN, just delete the semi-colom
{1} from the end of line 2@.

These D05 commands should only be used within programs inm a FRINT
statement beginning with a CTRL-D:

QOPER

APPEND

READ

WRITE

POSITION

These DOS commands may be used in immediate-exccution mode, and also from
within a program uveing a PRINT command with CTRL=D:

CATALOG BSAVE
EAVE BLOAD
LOAD BRUN
RUN EXEC
DELETE CLOSE,
RENAME CHATN
LOCK and UNLOCK PRI
MON and HOMON In#

<

The DOS command MAXFILES may be used as described above in an Applesoft
program, but it must be used in a special way from an Integer BASIC
program, as discussed in the section about the EXEC command in Chapter 7.

=

The DOS command INIT should be used only in immediate-execution mode
{dire consequences may result if you ignore this admonitiom).

31

— —————

32

34
35
35
36
37
38

CHAPTER 4
PLAYING SAFE

Creating a Turnkey System

LOCKE and UNLOCE

VERIFY

Write-Protecting a Disk

Protecting Yourself Against Disaster
Using the COPY Program

33

Two ways of protecting you and/or your diskettes against disaster have
already been mentioned. Chapter 3 mentions using the Volume option to
ensure that you place information on the desired diskette. The use of
control characters in file names can &lso be used as a way of protecting
yourself (see Chapter 2, "What’s in a Neme?" and also Appendix F, "File
Mames™). If what sppears in che CATALOG as

MY BARE ACCOUNT

in fact has your initials placed as control characters at some point{s) in
the name, then {t"s wnlikely that anyone else can access the file.

This chapter mentions a variecy of ways of protecting you and your
diskettes againat varlous undesirable events. You‘ll probably find one or
more of the technigues useful at one time or another. First, consider
making a special purpose "turnkey" system.

CREATING A TURNKEY SYSTEM

Suppose a doctor wants to do the office accounting on am AFPLE IT.

Ideally, the office staff should be sble to simply turn on the APPLE II,
t

{RESET} G6{CTRL}P {RETURN}

and immediately bhe in the midst of the doctor®s accounting program. Since
the accounting program would (hopefully) comsunicate with the user in
ordinary English, the staff wouldn”t need to know BASIC or anything else
about the APFLE IT. The computer would hecome an accounting syatem, 1its
internal characteristics unimportant since all the staff needs to know is
how to use the accounting program.

This 15 the essence of a "turnkey” system: from the user’s point of view
the computer I8 a device that does only a particular task, and getting the
ayatem started is as simple as turning a key in a lock. In this case; the
"key" is simply turning on the Apple‘s power switch and pressing five keys
on the keyboard. It does not require computer expertise to be able to do
that.

You can use the diskerte”s "greeting program,” named when you INITialized
the diskette, to turn your APPLE 11 into a turnkey system. Let”s say thar
you wanted the computer to run the COLOR DEMO program (provided on the
System Master diskette) every time you booted Disk II. Here's how:

1} INITialize a blank diskette, as described in Chaprer 2.

2) place the System Master diskette in your drive and type
RUN COLOR DEMOD
Once you're satisfied chat the program RUNs correctly, Cype
{CTRL}C
to stop the program and return to BASIC.

1) Put your newvly INITialized diskette into your drive. We®ll
assume that you called your “greeting" program HELLO when
you INITialized the diskette.

4) The program COLOR DEMO {8 now in memory. When you type

SAVE HELLO
DOS will erase your original greeting program named

34

HELLD and save the COLOR DEMO program under the HELLO
file name. The COLOR DEMO program is now the greeting
program on your diskette.

To check that all works as expected, boot the disk.
You should get the same program chat you used in step 2).

You“ve fust created a turnkey system: whensver thac diskecce is booted, it
will automatically LOAD the COLOR DEMD progras and RUN ie.

LOCK AND UNLOCK

Sometimes you"ll want to prevent a particular program from accidentally
being erased from a diskette: the LOCK command will do this for you.

Example:
LOCK WESS, D2

The CATALOG of this diskette’s contents will now show an asterisk (*)
next to the entry for NESS.

If you decide you no longer wish to keep the file LOCKed, the UNLOCK
command will (surprise!) unlock the file.

Example:
UNLOCK MESS

The syntax for the commands is
LOCK £ [,5a) [,Dd] [,Wv]
UNLOCK £ [,5a] [,Dd] [.V¥v]
The interpretation of the notation is discussed in the Syntax section of
Chapter 3.

If you try to DELETE or REMAME a file that’s LOCKed you'll receive the
mESsage

FILE LOCKED

¥You’ll aleo see this message 1f you try to SAVE a file uvsing the name of a
LOCKed file (if the file you're trying to SAVE is in the same language as
the LOCKed filae).

<

If you try to SAVE a file using the name of a LOCKed file in a different
langusge, then you"ll receive the message
FILE TYPE MISMATCH

Try again, using a different file name.

VERIFY

Oceoasfonally information may not he recorded correctly onm a disketce.
This may happen if the diskette iz scratched or dirty, for example. The
VERIFY coomand reports a file which may be damaged or writtenm incorrectly.

35

The syntax is the usuwal one for [0S commands:
VERIFY £ [.8s] [,Dd] [,Vv]

Examples of the way to use the command follow:
VERIFY SAH

VERIFY FINANCE-8,D2,V22

VERIFY checks to see that information in the specified file is
self-consistent. If it 18, you see no message: the prospt character for
the language you're using is simply printed:

> for Inceger BASIC

1 for Applesoft

* for the Monitor.

However, VERIFY doecsn”t check to see whether or not a program is
clobbered. Tf you SAVEd a program cthat was messed up somehow, 1t will
6till be messed up on the diskette, and it will still VERIFY.

If the VERIFY command finds an error, the
1/0 ERROR
message 1s displayed.

If you try to VERIFY a file that isn“t on the disk, the message
FILE ROT FOUND
iz presented.

You can use VERIFY from Integer BASIC, Applesoft, or the Moniter. From
these languages you may VERIFY any cype of file, including text files (sce
Chapters &, 7 and 8) and machine language programs (see Chapter 9).

WRITE-PROTECTING A DISK

The LOCK command allows you to protect a particular file. But sometimes
you will want to be sure that all files on a certain diskette are not
accidentally written over, and thus lost. To "write-protect"” a diskette,
you merely need to cover up the squarish write-protect cutout in the side
of the disk. Stick-on adhesive labels are supplied for this purpose when
you purchase diskettes but, in a pinch, any plece of sturdy tape will do.

Note that the System Master diskette does not have a write-protect cutout:

it is permanently write-protected.

wrlis=proteci sutoui

36

L)

b

ST]

L]

=)

If you decide you want to re-use a write-protected diskette, simply remove
the label (often called 8 "tab") that covers the write-protect cutout.

Some programs cannot be used with a write-protected diskette. An example
of such a program is ANIMALS, one of the demonstration programs of the
System Master disk. Put your System Master in your drive, and boot DOS if
you need to. Now type

LOAD ANIMALS
which will put the program into memory. How Cype
RUN

and the message

WRITE PROTECTED

STOPPED AT 1@4d

will be displayed. ANIMALS won’t EUN on a write-protected diskette
because it saves informaction on che diskette each time you play the game.
When you RUN the program, the diskette in the drive sust not be
write-protected, else the information can”t be written on the diskette.

Wow ANIMALS is in memory, but you can’t RUN it with the System Master
diskette. Put an initialized diskette, one that is not write-protected,
in the drive. Hext type

RUN

and now you can play ANIMALS, a game that will "remember" what you "teach"
it by saving the information on the diskette. When you're through
playing, type

SAVE ANIMALSR

so that you'll have the game on a diskette that’s not write-protected.

If you type

CATALDG

you should see that you have not only a copy of ANIMALS on the diskette,
but also a mew file called ANIMALSFILE that was created by the program
ANTMALS .

PROTECTING YOURSELF AGAINST DISASTER

Floppy disks are sturdy and reliable compared to some other ways of
storing computer programs =-- for example, on the backs of old envelopes.
But it"s still possible to lose or destroy all information on a diskette.
A diskette may get scratched or damaged by heat; it may get lost, or a dog
may chew it; someone may decide to use it as a frishee at the beach; if a
diskette isn’t write-protected, it may asccidentally get writtenm over. And
a diskette will eventually wear out =- a lifecime of 4@ working hours is
about average.

Ak Moral **

Eeep more than one copy of a program arocund if you don’t want to lose it.
In computerese, "back up" any valuable program.

If you are in the midst of writing or modifying a program, one way to back
up the program is to keep coples of carlier versions. Then If the current
version is lost you can fall back to the next-most-recent version, and
hopefully not lose teo much programming time. One good way to do this is

37

to end each file name with a number which changes from version to version.
For example, suppose you start to write a program called FINANCE. The

first time you save the program, call it FINANCE-1. Next time you work on
the program, save it under the name FINANCE-2; the third time, it becomes

FINAMCE-3, and so on. You'll wind up with a whele colleection of FINANCE
programs, with the largest version number representing the most recent
varsion of the program.

It‘s & good idea to SAVE a developing program periodically (wich a new
version number). If you do this every 15 or 2@ minutes, an unexpected
power failure or other dissster will not erase all your work. You can,

of course, immediately continue working after SAVEing the current state of
the program —- just be sure to assign a new version number for the next
SAVE. If the diskette starts £illing up, DELETE some of the earlier
versions. But it”s a good idea to keep several versions around, In case
something calamitous happens to the current wversion. Or you may just
happen to want an earlier version -- not all revisions are improvements.

The phrase "backing vp" is also used to describe keeping sultiple copies
of programs on separate diskettes. There are two approaches to backing up
in this fashion. The [irst method works with only one drive: simply BAVE
the program on one diskette, remove that diskette from the drive, insert
another diskette and SAVE the program again.

The second approach involves duplicating all the {nformacrion from one

diskette onto a second diskerce; this works only if vou have more than one
disk drive. This approach is discussed in the next section.

USING THE COPY PROGRAM

Those of you with one disk drive will have to LOAD, then SAVE, programs
one by one onto the diskettes you use for back-up copiles of programs.
Those of you with two drives can use the COPY program, on the Syatem
Master diskette, to copy the entire contents of your current programming
diskette onto your back-up diskette. The COPY program requires that both
disk drives must be connected to the same disk controller card, to prevent
overstraining the power supply.

In the COPY program, the diskette from which copying is done is called
the "original." The entire contents of the source diskerte will be
copled onto a "duplicate" diskette. The "duplicate" diskette does not
have to be INITialized before being copied onto. In fact, any previous
information that was on the "duplicate” diskette will be erased.

Before copying the "original" diskette, it"s a good idea to write-protect
it. Then you can’t accidentally erase its contents, even if you put it
into the wrong drive.

As default values, the program assumes that the "original™ diskette will
be placed in the currently selected drive (che drive from which you ran
COPY), connected to the controller card in the currently selected sloc.
To use the default slot or drive number for the "original" diskette, just
press the RETURN key when the program expects you to type a number. If
elther default is wrong for the "original™ diskette in your system, you
muat type the correct oumber whem 1t"s requested by the program.

38

When you have specified the slot and drive numbers for the "original"
diskette, the COPY program tells you where the "duplicate" diskette must
be placed. It will go in the remaining drive controlled from the same
slot which you specified for the "original.

Here“s an example of using the COPY program with the defaulr slot and
drive numbers. It assumes your two disk drives are connected to a disk
controller card in slot fé.

1) Place the System Mascter disketce in drive 1. Type
RUN COPY
and after the usual whirring you should see

APPLE DISKETTE DUFLICATION FROGRAM

PLERSE INSERT ORIGINAI

ORIGINAL SLOT BEFALLTY = &
2) Bemove the System Master diskette from drive | and then insert the

original diskacte, from which you wish to copy. into drive 1
(did you remember to write-protect yvour originall).

3) Now press the RETURR key to indicate you want to use the default
slot number, slot #6 in our example, for the original disketce.
Hext you"ll see

DRIVE DEFAULT = 1

and again press the RETURN key to indicate you want the default
drive nusber, drive 1 in our example, for the original diskette.

4) Now you will see

RPPLE DISKETTE DUPLICATION PROGRAN

FLEASE INSERT ORIGINAL

DRIGINAL SLOT &
DR IVE 1
DUPLICATE SLOT ()
DPRIVE 2

ORIGINAL IMN SLOT &

DRIVE 1

DUPLICATE IN SLOT &

DRIVE 2

INSERT DUFLICATE THEN
—— PRESS “RETURN-® KEY TO BEGIN COPY ——-

a9

Insert the "duplicare" diskette, onto which you wish to place the
hack-up copy, into the drive specified for it: drive 2, in this

example. To stop the program st any response, use the traditional
CTRL~C

5) Finally, to begin copyving, press the RETURN kay.

If the message
krkddor UNAELE TO WRITE oeseckdopd

occurs when you try to copy a diskette, there is no diskette in the
"duplicate" disk drive. The message

whdokd DUPLICATE MRITE FROTECTED s

indicates a problem with the "duplicace" diskette or the drive containing
it. If the diskette has a tab over its write-protect notch, no
information can be put onto the diskerte until the tab is removed.

<

In eother situations, DOS will report an

1/0 ERROR

if a diskette is inserted improperly or if the drive door is left open,
but the COPY program will tell you (incorractly) that the diskette is

write=protected.

<

If you do not have a second disk drive connected, vou will be given the
Incorrect message that the "duplicate" is write-protected.

The nessage

indicates a problem with the "original™ diskette or the drive containing
it. Perhaps the diskette has been clobbared, or perhaps there’s no
diskette in the drive.

—_—

(X

When the program asks
DD YOU WISH TO MAKE ANOTHER CORY?

answer with ¥ for YES, or M for MO, and press the RETURN key. Do not
type more than one character before pressing RETURN.

>

1f you try to use a printer with the COPY program, you®ll find weird
displays both on the TV screen and on the printer.

i HHHEHHEEBEEEDHEENENEEHEEETEEEENEEEEEER

42
43
&4
&4

CHAPTER 5
MORE “HOUSEKEEPING”
INFORMATION

Debugging: MON and NOMONW
MAXFILES

TRACE

Using the UPDATE Program

a4

DEBUGGING: MON AND NOMON

The process of trying to get a program to run the way you want it to is
called "debugging;" program errors are often referred to as "bugs". All
disk commands and all informatien sent between the computer and the disk
are normally not displayed on the screen. But when vou're debugging,
monitoring this information canm help you track down problems.

The HON command allows you to MONitor a wariecy of informacion. To turn

various parcs of the dieplay off again, use the NOMON (NO MONitor)
command .

Three different parameters that may be used in these commands:

C stands for Commands to che digk (such as OPEN, READ, atc)

1 stande for Input from the disk (when READIng a file)

0 stands for Output to the disk (when WRITEing a file).

These parameters are used only with the NOMON and MON commands. Usually
HOMON C,1,0 18 in effect: no monitoring is taking place.

The syntax for the commands {s

Mow [c] [,I] [,0]
ROMON [C] [,1] [.0]
At least one of the three parameters must be present with the NOMON and
MON commands, else the command will be ignored. The parameters may appear
in any order and, as usuval, must be secparated by commas.

There are 7 different ways in which the MON command may be used:

command what it monitors

HON © Commands to the disk

MON I Input from the disk

MON O futput to the disk

MON 1,0 Input from and Output te the disk
HMON C,1 Commands to and Input from the disk
MOM C,0 Commands to and Cutput to the disk

MON C,I,0 Commands to, Input from, and Output to the disk

To illustrate how the command works, a sample program called TEST MON is
included on the System Master diskette. To try out the program, place the
System Master in your drive and cype

LOAD TEST MON

then SAVE the program on a diskette thac’s not write-protected. Now RUN
the program. A list of optioms will be presented to you. Each time you
select an option the program will put material into a disk file and alse
retrieve material from a disk file. (Lines 1#@ through 188 create a text
file SAMPLE containing 3 numbers and 2 atrings; lines 200 chrough 27d
retrieve the file SAMPLE.) Try out all the options: notice what kind of
information iz displayed for each possible combination of parameters.

k% NOTE ®k*
A MON command remains in effect until &
KOMOW, INT, or FP (firmware only) command is encountered
or
until you boot the system
or
do a restarc (3DBG).

A meat trick: you can issue a MON command and later cancel it without
affecting the screen format -- even the NOMON does not show on the sScreens
Suppose you execute o MON command, say

HOW C, I, O

To cancel the command without having it print on the screen, include
PRINT D§; "MOMON C,1,0": VTAR PEEE(37): CALL -868

where DS, as usual, conteins CTRL-D.

MAXFILES

DOS allows wup to 16 files to be active (in use) at one time. DOS deals
with several types of files in addition to the BASIC program files
discussed so far. 5See Chaprer & for a discussion of sequential text
files, Chapter B8 for random-access text files, and Chapter 9 for the DOS
commands used with binary (machine language) files.

The MAXFILES command specifies how many active files are permitted. When
you boot DOR, the command

MAXFILES 3

is executed, which sets up the defaulc condition: a maximum of 3 files may
be active simultancously until another MAXFILES command is executed.

The command”s syntax is

HAXFILES n

where n must be an integer from | to 16. Specifying a value outside this
range will couse a SYNTAX ERROR message from either Applesoft or Integer
BASIC; from the Monitor, a beep is the enly indication that you've done
somathing wrong.

For each file specified, MAXFILES sets aside 395 bytes of memory space
called a file buffer. This addictional memory space for each active file
is used to help adjusc for cthe fact that memory speed is far faster than
disk access speed, which involves mechanical motion == the disk head has
to search the diskette:. 5o in the name of efficiency, a file buffer is
used to "buffer"” information going to and from a diskette.

If you recrieve information from a diskecte, DOS brings in 2536 characters
at a time and puts them in the "input" part of the file buffer, then
delivers to you whatever subset of those 236 characters your program
requested. If you are sending information to a diskette, characters are
stored in the "output" part of the file buffer uncil 256 characters have
accumulated, then they're shipped to the diskette all at once.

Suppose you have MAXFILES 1 and one file is active. An attempt to perform
a DOS command (such as CATALOG) will cause the message

N0 BUFFERS AVAILABLE

to be displayed.

When the system is booted, the number of active files (n) defaules to 3,
g0 1785 bytes of memory are reserved for 3 file buffers. Under most
circumstances, you won't need more than 3 active files. If more files are
required, type

MAXFILES n

{where n is the number of needed filea) in {mmediate execution mode

before loasding and running a program.

¥
In immediate execution mode, increasing MAXFILES erases Integer BASIC
programs and messes up Applesoft strings, since HIMEM: is moved down

without moving the program or strings. To avoid this problem, reset
MAXFILES before loading and running a program.

<

1f MAXFILES is used within a program, it changes memory pointers, and a
GOTO, GOSUB, or other instruction can get lost. If you must change
MAXFILES from within an Applesoft program, make the MAXFILES command the
firsr statement in the program, before any string variables are declared.
For example,

¢ PRINT CHR5(4); "MANFILES 5"

2(f REM REST OF PROGRAM GOES HERE

To use MAXFILES from within an Integer BASIC program, you need to create
an EXEC file, as discussed on page /3.

TRACE

The Applesoft TRACE command is a useful debugging tool. But when TRACE is
in effect, DOS commands inside Applesoft programs don”t work because TRACE
prints the line number with no RETURN before the D05 command. There’s a
partial solution to the problem. You can insert a RETURN (CHRS(L3))
into the D3 string

1@ 0§ = CHRS(13} + CHRS(4)

and then most DOS commands will work properly even if TRACE is in effect.

=

2

If TRACE is in effect when DO5 (with the DS fix, above) is WRITEing, all
the TRACEd line numbers will be printed into wvour text file along with the
characters you wished to print.

USING THE UPDATE PROGRAM

As discussed in Chapter 2, IMNIT is used to create slave diskettes. In
this section you"ll learn how to create master diskettes. The distinction
between o slave and a master is not readily apparent: both come charmingly
attired in the latest in black plastic (no, not leather) garb. It's up

to you to revise your greeting program and diskerte label to remind
yourself which is slave and which is master.

The System Master diskette contains a program called UFDATE 3.2 that can
run on an Apple II with at least 16K of memory. The UFDATE program does
the following for you:

* "Updaces" a previously INITialized diskette to DOS version 3.2
withour affecting program or data files that are already stored
on that disketce.

H M HHEHEHENDEHEENEEDNHEEODHEEEUDENAEE G

* Converts a slave diskette (whose DOS is memory-size dependent)
into a master diskette (whose DOS is self-relocating so that
memory is used efficiently on any size system).

Gives the updated diskette a new grecting program pase, the name
DOS will attempt to RUN each time the diskecce is booted.

The UPDATE 3.2 program must be used with a diskette that has already been
INITialized. It will not work with & diskette that is write-protecced.

Here’s an example of how to UPDATE the diskette INITialized in Chapter 2
(the one with the ONE TO TEN program onm it) to convert the slave diskette
ereated by INIT into a master diskette. For convenience, that diskette
will be referred to as diskette ONE in the discussion that follows.

Before using UPDATE 3.2, do the following:

1) Insert the diskette you wish to update -- diskatte OME for this
example —- into the disk drive and RUN che diskette’s greeting
program —— named HELLO on diskette ONE. The message displayed by
a greeting program should include the version of DOS used to
initialize the diskotte, and its status as slave or master.

2} Change the appropriate lines of the greeting program to display the new
information, "MASTER DISKETTE UPDATED TO DO5S VERSION 3.2". Then SAVE
this new version of the greeting program. If the diskette’s outside
label requires a similar change, make that chonge now.

1) Mote the pame of the greeting program. If you wish the updated
diskette to RUN this same program each time it is booted, just as it
did before updating, you will give this greeting program nams to the
UPDATE 3.2 program, later on. If you've always wished that your
grecting program hed some other mame than its present one, RENAME
the greeting program now. Later, you will give the pew name to
the UFDATE 3.2 program.

To use UPDATE 3.2, do the following:

4) Put the System Master diskette in the drive, boot DDS, and
from either BASIC type
BRUN UPDATE 3.2

3) You should see the message
DO = 2 MASTER — UPDATE UTILITY
COPYRIGHT 1979 BY RFFLE COMPUTER

ALL RIGHTS RESERVED

CHOW LORDING DOS THMAGE >

6) You’ll then be told to type the greeting program name
to be used by the updated diskette:

PLEARSE INFPUT THE “GREETING" FROGRAM-S
FILE NAME

45

We‘ll assume that when you SAVEd the revised greeting program

on diskette ONE {step 3, above}, you used the name HELLO. So type
HELLO

unless you wish the diskette to RUN some other program name each
time the diskette is booted. When you press the RETURN key to enter
the greeting program name, you'll see this message:

REMEMBER THART “"UPDATE"™ DOES MOT CRERTE
THE "GREETING" PROGREAM:. OR PLACE IT IM
THE DISK DIRECTORY

THIS IS THE FILE NAME THRT WILL EE
PLACED WITHIN THE IMAGE

HELLO

PLACE THE DISKETTE TO BE “LUPDATED" IN
THE DISK DRIVE

FPRESS [RETURN] WHEN READY

NOTE IE Y0uU WANT A DIFFERENT FILE HAME.
PRESS [ESC1

4) Pollow the instructions. Remove the System Master diskecte from the
disk drive and replace it with the diskette you wish to update ==
diskette ONE, in this case. Finally, press the RETURN key to begin
updating; the program will inform you when the process is complete.

5) After using the UPDATE 3.2 program, always re-boot DOS
before doing any other work.

wik Wope wEE

The greeting program name that you give to the UPFDATE 3.2 program is not
placed in the diskette’s CATALOG. It just tells the diskette’s T8 which
program name to RUN cach time the diskette is hooted. You must make
sure that the diskerre s CATALOG actually contains & program bearing the
same name you give to the UPDATE 3.2 program.

If you forget to do so (by skipping step 3, above}, you'll see the message
FILE NOT FOUND

eacn time you boot the disk using this diskette.

*%% Reminder %%k

¥ou must remember the name of the grescing program for cach dishette.
You can make this pretty simple by using the same greeting program name on
all of your diskettes.

48
49
58
59
(1]
]
69

cnarmez O
USING SEQUENTIAL FILES

Text Files: an Introduction

Sequential Files: Some Examples

OPENing and CLOSEing Sequential Files
WRITEing Sequential Files

READIng Sequential Files

More on Sequential Files: APPEND and POSITION
Byte-ing Off More

47

TEXT FILES: AN INTRODUCTION

Sometimes you"ll want to use the disk to atore information that is not &
program. You may, for example, wish to keep copies of correspondence, a
list of words used in a word-guessing game, intermediate results of a
caleculation, or a mailing list. A text file, sometimes called a data
file will allow you te do this and more. The letter T marks cext files
in the CATALOG directory.

Text files are created and retrieved using DOS commands in an Inceger
BASIC or Applesoft program. A text file may be created using a program
written in one lanpuage and retrieved from a disketce using a program
written in another language.

Most sample programs in this manual are in Applesoft. If you wish to
convert the programs to Integer BASIC, recall that in Integer BASIC you
can”t make string arrays and you must DIMension string variables. In an
Integer BASIC command such as

INPUT A5, BS, C§

only RETURNs (oot commas) may separate the three responses. This manual
does not tell you how to make cach program run in Integer BASIC: see the
Appendix M of the Applesoft IT BASIC Programming Reference Manual for
detalils of converting between languages. For some hints about changing
the BASIC in which a program runs, after the program has been writtem,
see page 76 of this DOS manual.

The DOS commands LOAD and RUN (also BLOAD and BRUN) may not be used with a
text file. An attempt to do so will cause the message

FILE TYPE MISHATCH

to appear. LOAD and RUN expect a BASIC program file (and BLOAD and BRUH
expect a Binary machine=language fila), not a text file. Instead, you
must write programs that send data to a text file and retrleve data from a
text file, using the DOS commands discussed in this chapter:

OPEN

CLOSE

READ

WRITE

APPEND

POSITION

EXEG

The commands OPEM, READ, WRITE, APPEND and POSITION cannot be used in
immediate-execution mode. 1f you try to do g0, you'll receive the message
NOT DIRECT COMMAND

These commands pust be used in deferred-execution mode, that is, from
within a program. The commands CLOSE and EXEC may be uaed in
immediate—execution mode.

In addition to the commands listed above, the DOE commands

LOCK and UHLOCK

DELETE

RENAME

HON and NOMON

VERLFY

CATALOG

work with text files in the same way they work with program files.

48

There are two different types of text files: scquential text files and
rendom-access text Flles. Both types of text files store stringe of ASCIL
codes to represent the data, but in different formats. Diagrams of the
two text-file types are shown below (the character 3 represents the
RETURN character, sent automatically at the end of most PRINT statements)-

"PICTURE" OF A SEQUENTIAL TEXT FILE

Characters [Ty [AfrpJofufefpIefejoWlp | [[[[[T
ASCI1: [55]13]65]84]13]79] 78] 69]13]66]76] 79]67] L3 AN[0P]#0]0R] 98|00 [#0]
File Byte: @ 1 2 3 & 5 6 7 8 919 11 12 13 14 15 16 17 18 19 29

—n f et e Ty ;o

Field:] I 2 ;

"PICTURE" OF A RANDOM-ACCESS TEXT FILE
(Example: Record Length 5, One Field per Record)

characters[7 3] | | AT] I P EDR] Bl B[]

ASCIT: |55 13[A@ [0 |65 as]13]@d]@a] 7978 [aa]13]@A |e6]76 [75]87 [13 [#d]

File Byce: # 1 2 3 4 5 6 7 8 918 11 12 13 14 15 16 17 18 19 2¢

Record Byte: @ 1 2 3 4 @ 1 2 3 4 P 1 2 3 4 8 1 2 3 4 @
o % = 2 5 = : 2
Field: @ @ @ a
= o L i iy P 4 24 2
Record: @ 1 2 3

The terms "field" and "record" will be discussed in Chapters 6, 7 and 8.
The commands OPEN, CLOSE, READ, WRITE and POSITION are used with both
types of files, but in somewhat different ways. Sequential text files are
gimpler to use and understand, in some respects, so we will discuss the
use and structure of sequentisl text files first. The use of
random-access text files is described in Chapter 8. HMore detailed and
technical imformation about all types of files can be found in Appendix C.

SEQUENTIAL TEXT FILES: SOME EXAMPLES

Suppose you want to make a file containing a list of words to be used in a
word=-guessing game. Here are two pairs of programs that deal with such a
file. The first program in each pair creates a text file on the diskette.
The second program in each pair retrieves the data stored in the text
file from the diskette.

This program creates a text file named WORDS1, containing the words APPLE,
BANANA, CATALOG, DORMANT, EAGLE, FRUIT, GOOSE, HAT and ICICLE.

49

16 REM MRKE MOEDS1

268 Df = "": REM CTRL-D

38 PRINT D¥; "OPEN HORDSL"
48 PRINT D¥: "WRITE WORDSL"
S8 PRINT “"APPLE"

68 PRINT “BANANAR"

7 PRINT "CATRALOG"

BE PRINT “DORMAMNT"

SR PRINT "ERGLE"™

188 FRINT "FRUIT™

118 PRINT "GOOSE™

128 PRINT "HAT"

138 PRINT "ICICLE®"

148 PRINT D& "CLOSE WORDSL™
158 END

Line 3% OFENs the file, using the normal format for sending a DOS command
from within a BASIC program. OPFEN places o text file nmamed WORDS1 in the
CATALOG (if it was not there previously).

Line 4§‘s WRITE command causes subsequent output from PRINT statemonts to
be sent to the named text file instead of to the TV screen. So in this
program, each PRINT stotement fn lines 50 through 139 will send the word
inside the quotation marks to the text file WORDS1, and not to the TV
BCTEEN.

Line 14¢ CLOSEs the file, and ends the file—writing process.

If the program is RUN and you're not in MONitor mode you won't see
anything: usually DOS commands and disk input and output are not
displayed. But if, as explained in Chapter 5, you type
HOW C, 1, O
{or simply
MOB C, ©
aince no input from the disk is involved) and then you RUN the above
program you'll see the fallowing:

OPEN WORDSL

WRITE WORDS1

AFPLE

EAMNANG

CATALOG

DORMANT

ERAGLE

FRULT

GOOSE

HAT

ICICLE

CLOSE WORDS1

At this point you"ll have a file called WORDS1 on your diskette. WORDSI
will be marked with a "T" in the CATALDG to indicate that it’s a text
file. The file consists of items of data (in this case, words) separated
by RETURNE. A RETURN character is automatically sent at the end of every
PRINT statement which does not end with a comma or a semicolon. Note that
in this sense cach RETURK is a character rather than an action == in
particular, it is the character with ASCII code 13.

Each {tem of data, ending with ite RETURN character, is called a field.
A field is stored in the text file as a series of characters represented

by their ASCIT codes. The laat character in each fiald most be the RETURK
character, ASCII code 13.

WORDS1 is called a gsequential text file because each field is stored
beginning immediately after the RETURN character of the preceding field.
When stored on the diskette, fields may be of different lengthe: the word
APPLE takes 6 bytes (one for each lecter plus one for the RETURN
character), BANANA takes 7 bytes, and 80 on. A sequential text file is
stored on the diskette as one long, continuous series of ASCII-coded
characters, a chain of fields with no gaps left between them.

Once WORDS! is on the diskette, the question immediately arises, "How can
1 retrieve 1t%" The following Applesoft program will retrieve WORDS1:

18 REM RETRIEVE WORDS1
20 D% = "": REM CTRL-D
I8 PRINT DS “OPEN WORDSL"
it PRINT D& "READ WORDSL™

58 FOR I =1 T0O 9

B8 INPUT RSCI

78 NEXT 1

80 PRINT D$: “CLOSE WORDS1"
99 END

Line 3@ OPENs the file; line 4@ tells DOS that all subsequent INPUT or GET
statements will refer to the named diskette file instead of the Apple’s
keyboard. It is as if the disk were typing responses, instead of you. An
INPUT command always causes one complete field, ending with its RETURN
character, to be “typed in" to the Apple. If another INPUT command
follows, it will cause the next field to be read in, and so on. So

lines 50 chrough 70 cause DDS to start at che beginning of WORDS1 and

retrieve 9 fields which are placed in the array AS(1), AS(2), AS(3),
AS(6), -.. AS(9). Line 8@ politely CLOSEs the file.

If MON C, I, O is not in effect when the above program is RUN, you will
see nothing on your screen. But 4f MON C, I, 0 (or just MOW C, I) is in
effect, you'll see

OFEN RORDSA

READ HOURDS1

PRPFLE

TEBANAMA

5

CATALOG
DORMANT
YEAGLE
FFRUIT
TEOUSE

PHAT

*ICICLE
CLOSE WORD=S1

A question mark (7) iz displayed before each INPUT from the disk, just
as it is before ecach normal keyboard INPUT.

To check that all worked as claimed; try typing

PRINT AS(2), AS(9), AS(4)

and you should see the words BANANA — from AS(9) -- then ICICLE and
finally DOBMANT. This is a good way to check that information was read
correctly.

<>

1f you modify the program MAKE WORDE]l to make different words, be sure to
DELETE WORDS! before re-RUNning MAKE WORDS1. If you don’t, you may end up
with a mixture of cthe old words and the new.

Here's how to create a sequentiasl file called WORDSZ containing the same
words as WORDS1, but with all nine words im pne field. Each word is
followed by a comma, so that an INPUT statement with multiple variables
{9, in this case) can be used to retrieve the separate words.

i®8 REM MAKE WORDSZ

28 bg = "%: REM CTRL-D

A PRINT D#: "OFEM WORDSZ2®

48 PRINT D¥: “WRITE WORDSZ2"

S& PRINT * APPLE. ERMNANA. CATALOD
G "

&8 PRINT " DORMANT. ERGLE., FRUIT

@ PRINT " GOOSE. HAT. ICICLE"
28 PRINT D& "CLOSE HORDSZ2"
28 END

¥ote that the PRINT command in line 5§ ends with a semi-colon. A
aemi=-colon at the end of a PRINT command stops the automatic printing of a
RETURN character after the last data character. Therefore the characters
sent to the disk by the next PRINT command will appear in the same

field with the characters sent by line 5@"s PRINT command. The PRINT
command in line 6@ also ends with a semi=-colon, so the field still does
not have its end-marking RETURN character. Line 7§°s PRINT command ends
without a semi-colon or comma, allowing the automacic final RETURN
character to be sent at last. This ends the field, which now contains all
the characters PRINTed by lines 5@, 6@ and 7.

52

SN DERAEBSAEDS

<

Commas in a disk-less PRINT command usually send characters to defined
tab=fields on the screen. However, commas do not serve this same
formatting function in PRINT commands used when WRITEing to the disk:
these commas are treated ss if they were semi-colons. In PRINTing to the
disk, items separaced by commas will be concatenated, with ne intervening
gpaces inserted. A comma at the end of a PRINT command has the same
effect as a semi-colon: no automatic final RETURN character Iis sent.

When the program MAKE WORDS2 is RUN with MON C, I, O in effect, you'll see

OPEN MWORDS2

HRITE WORDSZ

AEFPLE. BRANANA, CATALOG. DORMANT, EAGLE.
FRUIT, GOOSE. HAT. ICICLE

CLOSE MWORDSZ

This Applesoft program retrieves WORDSZ:

1B REM RETRIEVE WORDSZ

28 D = "": REM CTRL-D

28 PRINT D#%: "DPEN HORDSZ2"

48 FPRINT Dv¥; "READ WORDEZ™

S8 INPUT Ri%: A2%; AZ$. A4F: ASE: AGS
» AT ¥ AGF. ADF

88 PRINT D%:“CLOSE HWORDSZ2"

98 END

When the above program is RUN with MON €, I, O in effect, you'll sec

OPEN WORDSZ2

RERD WORDSZ

7 APPLE:. BANANA. CATALOG. DORMANT. ERGLE
+ FRUIT, GOOUSE. HAT. ICICLE

CLOSE WORDSZ

In Integer BASIC, commas can separate multiple INPUT responses for
numeric variables, but not for string variables. Only RETURN
characters can separate multiple responses when INPUT is used with
pultiple string variables. In Integer BASIC, therefore, the program
RETRIEVE WORDSZ will assign the entire fleld (9 words, B comman and 6
spaces) to the variable Al$. Then you will get the END OF DATA message
when there is no field to assign AZS.

In Applesocft BASIC, you can also use the GET command to retrieve data Erom
a text file, character by character. This has the advantage that you can
define any character as marking the end-of-word, for instance. The
following Applesoft program also retrieves the text file WORDSZ.

In line 1@, the CLEAR command scts all variables (including 1 and all
AS(I)"8) to zero. Line 20 uses Applesoft’s alternate way of setting DS to
CTRL-D (4 is the ASCII code for CTREL-D). This method avoids the invisible
{and un-copyable) control character.

18 CLEAR REM GET WORDSZ

28 DS = CHR¥ (4): REM CTRL-D
CHR% (1Z): REM RETURN
42 T% = CHR¥ (13: REM CTRL-R
58 PRINT D "OFEN WORDSZ®

68 PRINT DS “READ WORDSZ"

7B I = T %14

BB GET E¥f

98 IF B¥ = %, % THEN 0GOTD 78
ieg IF B = R$¢ THEN GOTO 138
112 AF(IDY = AF(IY + BS

115 PRINT T¥:RSCI)

128 GOTD &8
b B
i

x
[
i]

38 PRINT R%:D#; "CLOSE WORDS2"
43 END

Line 80 GETs one cheracter at & time from the text file WORDS2, which was
OPENed for READIng in lines 58 and 6@. Tf the new character is neither a
comma nor & RETURN, line 11¢ adds the new character to the end of the
string A%(I). Then line 12§ sends the program back to line 88, to GET the
next character. Thus, the program builds up the first word, charactaer by
character, in AS(l).

When a comma is found the first word is ended, so line 99 sends the
program back to line 78 to increment I and starc collecting a new word inm
A5(2). And so on. Finally, a RETURM character (R$) marks the end of the
field, so line 1@ sends the program on to line 13§ te CLOSE the file and
end the program. MNote the use of CHR$(13), in line 3¢. You canmot
directly type a RETURN cherscter inte & BASIC program line (a typed
RETURN ends & program linme), but CHR5(13) is a RETURN character in
Applesoft.

When GET obtains characters from the disk, these characters are not
displayed on the screen, even in MOM C, I, O mode. Line 95 has been added
to let you see the words es they are built up, character by character.

After an Applesoft GET command takes its response from a diskette text
file, the following problems arise:
1) With KOMOW C,1,0 the first character PRINTed after the GET
will not appear on the screen.
2} With MON C,I,0 the first character PRINTed after the GET
will appear on the screen.
1) In either mode, if a DOS command is the first item PRINTed
after the GET, the DOS command may not be executed because
the necessary preceding RETURN iz missing.

In the program GET WORDS2Z, the non-printing “throw-away" character CTRL-A
(T$) was placed before the first desired PRINT character in line 115.
This takes care of problems | and 2, above. To cure problem 3; the RETURNM
character (RS) was placed before the PRINTed DOS command in line 13@, much
as was done with TRACE (see page 44).

When this program is RUN wicth MON C, 1, 0 in effect, you will see the
following (but all displayed in one column, not three):

54

g ool EeERR PG EO

OFEM HORDSZ2
READ WORDSZ

A b G

HE (1] an

APe DOR GOO

APPL pORM Goos

RPPLE DORMA GOCOSE
DORMAN

B GORMANT H

BA HFA

Fi=r E HAT

BRANA ER

BRnAR EAG 1

BRRANA ERGL 1C
ERGLE ICI

E IC1c

CA F ICICL

caT FE ICICLE

CATA FRU CLOSE WORDS2

CHTHL FRUI

CATALD FRUIT

CHATALOG

And lasctly, heres an Applescft program that creates a file WORDS1, with 2
words in the firsc field, 3 words in the second field, and & words in the
third field.

i REM MAKE WORDSZ

28 D = CHREF¥ <4>: REM CTRL-D

38 PRINT [£:"OFEN WORDSZE™

48 PRINT D% "WRITE HWORDZZE"

S8 PRINT “RFPLE. BRNANA"

&0 PRINT "CATALOG. DORMANT. ERGLE™

78 PRINT “FRUIT.GOOSE: HAT, ICICLE
88 PRINT D& “"CLOSE WORDS3I™
28 END

The first field will contain

APPLE, BANANA

and is 13 bytes long, one per character (commas must be counted too) plus
cne for the RETURN character. The second field,

CATALOG, DORMANT , EAGLE

ia 22 bytes long; the third field,

FRULT ,GOOSE, HAT , IGICLE

is 23 bytes long-

When RUN with MON C, I, O in effect you'll see

OFEN WORDSZ
HRITE WORDSZ
AFPLE. BANANA
CATALOG: DORMANT ., ERGLE
FRUIT. GOOSE. HAT, ICICLE
CLOSE WORDSZ

Here®s a program to retrieve WORDS3:

REM RETRIEVE WORDSZ:R

D¥ = CHR¥ (4); REM CTRL-D
PRINT D¥F; "0OPEN WORDS3I™
FRINT D¥; "READ WORDSI"
INFUT R%. 5%
INPUT 7% U5, VS
INPUT W&, X§: ¥F: 25
FRINT D¥; "CLOSE WORDSZE"
END

EESBS8EED

When RUN with MON €, I, O in effect, you’ll see the following:

OFPEN HORDS3

READ WORDSS

PAPPLE. BANANA

FCATALDG, DORMANT. ERGLE
TFRUIT, GOOSE. HAT.: ICICLE
CLOSE WORDSE

The programs to READ the sequential text files WORDS1, WORDSZ2, WORDS3 were
carafully designed to KEAD exactly the correct number of fields and the
correct number of items per field. In genersl, a program to retrieve a
text file must be designed around the specific file. If you make a
mistake, the results can appear somewhat confusing. For instance,

consider the following "wrong" program to retrieve the words in text file
WORDS3.

18 REM RETRIEVE WORDS3:B
280 D5 = "": REM CTRL-D

3B PRINT Df; “"OPEN WORDS3™
48 PRINT D% "READ WORDSI™
S8 INPUT R¥. S5

68 INPUT T#. L VS

7B INPUT LS. %5, YE

B8 PRINT D$; "CLOSE WORDSI™
@ END

With MON C, I, O in effect, here‘s what you would see on RUNning the
program.

OPEN WORDSZI

REFAD WORDSZ

TAFPPLE . BERANANA

TCATALDG: DORMANT . ERGLE
TEFRUIT, BOUSE, HAT.,: ICICLE
EuTRA [GHNORED

CLOSE WORDS3

The INPUT command in line 7@ coused the entire field containing

FRULIT ,GOOSE, HAT , ICICLE

to be READ into the Apple. The first three words were assigned to the
variables W5, X5 and Y5. But there is no variable corresponding to the
fourth INPUT response, ICICLE, so the message

EXTRA ITGNORED

is displayed, and execution comtinues.

Here is another "wrong” program to READ the text file WORDS3:

18 PREM RETRIEVE HORDSI:C
2B D% = """ REM CTRL-D

J&@ PRINT D% "OPEN WORDSZ"
48 FRINT DE: “RERD WORDSE™
58 INPUT R¥. ST

BB INPUT T#. L. VE. WS

ra INPUT X Y¥. Z

88 PRINT D¥;: “CLOSE HORDSZ™
33 END

And here is a MON C, I, O RUN of the program.

ODFEN WORDS3

FERD WORDSE

TAPPLE, BANANA

CRTALDG, DORMANT : ERGLE
FPFRUI T, GOOSE: HAT: ICICLE
TEXTFR IGNORED

END OF DATH
BREAK IN 78

This time, line 6@ caused the field

CATALOG , DORMANT , EAGLE

to be READ into the Apple. The three words are assigned to the variables
T5, U5 and V5. But line 60°s INPUT command expected four responses, 80
it causes the next complete field to be READ into the Apple:

FRUIT ,GOOSE,HAT , ICICLE

The first word, FRUIT, is assigned to line 6@"s last variable, W$. There
are no more variables with this INPUT command, so the message

EXTRA IGHORED

57

ig displayed, and execution continues. There are no more fields inm the
file, &0 line 78"s INPUT command causes the
END OF DATA

message, and the program comes to a SLOp.

A somewhat more general pair of programs, MAKE TEXT and RETRIEVE TEXT are

digcussed in a later section. They {llustrate how to make a program more
adaptable to different text files.

OPEN-ING AND CLOSE-ING SEQUENTIAL FILES

Sequential text files should be used when informacion iz to be retrieved
in & linear fashion from the beginning to the end of the file, and when
information does not require much updaring or on-going revision. For
example, a sequencial file could be used to contain data for a
word-guessing game, as in the preceding semple programs.

To create a sequential text file, the commands
OPEN

WRITE
PRINT
CLOSE

are used, in the order shown {(though not necessarily right afcer each
other)- To retrieve o sequential text file, the commands

OPEN

READ

INPUT

CLOSE

are used, again in the order shown though not necessarily right after each
other. Both procedures are {1lustrated I{n the preceding section.

A eertain ritual is required before and after you create (WRITE) a
sequential text file: before wsing the file you must OPEN ic. Whem you're
done, you must CLOSE it. The same is true when retrieving (READIng) a

aequential text file: OPEN before READing, and CLOSE the file when you're
done .

-

Files that have been OPENed musc be CLOSEd. Failure to CLOSE a file that
was OPENed and written to by a WRITE coomand may result in loss of data.

The syntax for these commands is similar to other DOS commands.

[Hote: OPEN and CLOSE are also used with random-access files -- see
Chapter 8.]

OPEN £ [,52] [,Dd] [,Wv]
CLOSE [£]

Examples: OPEN SESAME
OPEN BHOP, D2, 87
CLOSE
CLOBE MOUTHED
CLOSE WINDOW

58

"EREBEEREERBEEEREER BEEN BB B BB BB

OPEN sets aside workspace in the Apple for the file f (for those who know
about such stuff, OPEN allocates a 595=byte file buffer to handle this
file"s input and output), and gets the syscem ready to read or write from
the beginning of the file. OPER also sets up the slot and drive numbers
to be used by the subsequent WRITE (or READ) command.

The CLOSE command releases the workspace in the Apple (de-allocates the
file buffer associated with the fila f). If f is not specified, all OPEN
files will be closed, with the exception of any file being used by the
EXEC command. EXEC files are discussed later in Chapter 7. OFEN
gometimes CLOSEs too: OPEN first checks to sees if che named file is
already OPEN; if so, it CLOSEs it before re-0PENing it.

Hote that the CLOSE command has no Drive or Slot parameters. If you cypa
CLOSE MYFILE

then any file named MYFILE will be CLOSEd, regardless of the slot and
drive number associated with the file. Similarly, the command

CLOSE

will CLOSE all files (except a file being EXECed) on all disk drives.

In various circumstances, you may wish to delete a file £ that may or may
not exist. This is especially imporcant to avoid problems of overwriting
an old file (unless wou overwrita the entire old file, part of the old
file will remain, attached to the end of your new file). Suppose a game
creates and uses the file SCORES each time it is played, and you wish your

program to delece any old file by chat name at the start of cach new game.
The command

DELETE SCORES

will cause the error message
FILE ROT FOUKD

if the [lle doesn’t exist, and your program will halt. Heres a quick way

to delete any file named SCORES and re-0PEN it for new data, whether or
not that file already exiats:

5 REEM SCORES DELETER

10 DF = “*: REM D$ 1S CTRL-D
i5 PRINT D&: “OPEN SCORES™
Z6 PRINT D$: "DELETE SCORES"
% PRINT D$: “"OFPEN SCORESY

EEMARINDER U FEOGRRRM
HERE

WRITE-ING SEQUENTIAL FILES

Here is another program which creates a sequential text file. This
Applesoft program creates a text [{le named SAMPLE which contains 3
strings and 1@ numbers.

The file SAMPLE may or may not already exist each time the program is RUN:
if it does exist, it should be DE1ETEd so as to remove old data from the
file. 1If it does not exist and your program tries to DELETE it, you'll
receive the message

FILE KOT FOUND

59

and the program will stops Lines 20 and 3¢ take care of the problem. If
SAMPLE already exists, line 20 OPEMs it and line 30 DELETEs it. If SAMPLE
does not exist, line 20 creates a file SAMPLE and line 3§ DELETEs it.

When line 4§ iz executed it creates a clean new file SAMPLE, so the
problen of mixed files is avolded.

S REM MAKE SAMPLE

18 0f = CHRY (43 FEM CTRL-D
28 PRINT D¥.: "OPEN SAMFLE"

38 PRINT D¥%: "DELETE SAMFLE"

48 FRINT D#:; "OPEN SAMFLE"

S8 PRINT D%: "WRITE SAMPLE"

&8 PRINT "HI HO": FRINT "HI HO"
7B PRINT "OFF TO THE DISkK MWE GO
50
99

FOR J =1 TD'1@

%8 FRINT J

168 NEXT J

116 PRINT D$, “CLOSE SAWPLE"
128 END

Rere”s what you see on the screen when you RUN this program, if MOW C, I,
0 is in effect.

DFEN SRAMFLE

DELETE SAMPLE

OFEN SAMPLE

WRITE SAMFLE

HI HD

HI HO

OFF TO THE DISK WE GO
i

N R

3

o

i@
CLOSE SHAMPLE

Before you WRITE a file, it must be OPENed; CLOSE it (quietly, pleage)
whep you"re done. Both the OPEN and WRITE commands must refer to the same
file name.

Once a WRITE command is executed, any subsequent PRINT cosmands send all
characters to the diskerte, instead of the screen. A WRITE command is
cancelled by the use of any DOS command in a PRINT statemenct. Even the
"ampry" DOS command {just CTRL-0) will dao.

&

An INPUT command of the form

INFUT X%

also cancels a WRITE command, but only after storing as the last text file
character the ? which the INPUT command normolly displays om the screen.
If the form

INPUT "WHAT®S YOUR NAME? "; X$%

is used, the WRITE is canceled after the characters in the string are sent
to the diskette.

Z

An error message cancels a WRITE command, but only after the entire
error message is stored as the last field in your text file.

The syntax for the WRITE command when used with sequential files is:
WRITE £
[Note: WRITE is also used with random-access files, see Chapter B.]

Examples: WRITE LETTER
WRITE RIGHT

The sample program given at the beginning of this section iz a simple
illustration of the sost basic (EASIC?) elements needed to creste & Cext
file. A slightly more general Applesoft program called MAKE TEXT is on
the System Master diskette that came with your disk drive.

MAKE TEXT allows you to create a sequential text file containing up to 100
strings; each string may have at most 239 characters. Try it =— you'1ll
like it (we hopel. Place the System Master diskecte in your drive and
type

LOAD MAKE TEXT

A LIETlng of the program should look like this:

REM FMEEE TEMXT
10 DIM AFCledr:I = B
20 OF = CHRS (4): REM CHRS$<4> IS
CTRL-D
38 HOME : PRINT

48 PRINT “THIS PROGRAM LETS YOU
WEITE TERXRT FILES F

98 PRINT “¥0U GET TO TYFE ONE 57
RING AT A TIME o

B FRINT “A STRING MAY HAVE UF
0 230 CHARACTERS. o
T8 FPRIMNT I =71 +1
88 PRINT "<(TO QUIT. PRESS RETURN

KEY FIRST>"®
98 PRINT “TYPE STRING #"; 1,*
{ Continued on next page)

&1

(Continuved from previous page)

1@ INPUT “"“iRA$CIo

118 IF AECI> € > "" GOTO 78: REM
FIRST KEY PRESSED WAS NOT
RETURN KEY

123 PRINT

138 INPUT "WHAT FILE MNRMET "iN¥

148 FRINT DF: "COPEN ": N¥

158 PRINT D#: "DELETE "iN¥

168 PRINT D% "0OPEN " N%

178 PRINT D#:“WRITE “iN$

188 PRINT I - 1

19¢ FOR I =4 TO I - 1

208 PRINT RFECJ2

218 NEAT J

220 PRINT D% “CLOSE "; N¥

Onee the program is LOADed, SAVE it on a diskette that"s not
write-protected. (This step is necessary because this program, like the
ANIMALS program discussed inm Chapter &, creates a new file.)

Is MAKE TEXT still in your Apple? And a non-write-protected disk in the
drive? If so, cype

MOR C, I, O

g0 you can see the commands sent to end from the disk. Then type RUN
and you should see the following message:

THIS PROGRAM LETS YOU WRITE TERT FILES
YOU GET TD TYPE ONE STRING AT A TIME
A STRING MAY HAVE UP TO 235 CHARACTERS

(TO AUIT. PRESS RETURH KEY FIRSTY
TYPE STRING #1:

Type in as many strings as you like (up to L@J may be entered)-

Warning: the program uwses INPUT, so don"t type commas or colons into

your strings. When you wish te quit, just press the RETURN key instead of
typing a string. You'll be asked

WHAT FILE KAME?

Choose a name for your text file, press the RETURN key, and as your
strings are sent to the disk you"ll see them printed on the scresn. First
will appear the disk commands

OPEN f

DELETE £

OPEN f

WRITE £

{where the f is replaced by the file name you chose). They'll be Folleowed
by a numbar —— the number of strings you entered into the file. (This

62

number will be used by a program discussed in the next section that
retrieves your file). MNext you"ll see your strings.

the message

CLOSE £

Here’s a sample RUN of the MAKE TEXT program:

&

THIS PROGRAM LETS YOU WRITE TEXT FILES

YOU GET TD TYPE ONE STRING AT A TIME

A STRING MAY HAYE UFP TO 223 CHARACTERS

{TD QUIT. PRESS RETURN KEY FIRST:

TY'PE

STRING #1: HERE’S STRING 1

(TO AUIT. PRESS RETURN KEY FIRST2

TYPE

STRING #2: AND MY SECOND STRING

(TO BUIT. PRESS RETURN KEY FIRST2

I'YPE

STRIRG #Z: ON WE GO

(TD RUIT. PRESS RETURN KEY FIRST2

TYPE

STRING #4: ENOUGH ALREADY!

(TO aUIT. PRESS RETURN KEY FIRST2

TYFE

WHAT

STRING B35

FILE NEME? TEST

OFEN TEST
DELETE TEST
OFEN TEST
WRITE TEST

4

HERE"S STRING 1

RND MY SECOND STRING
ON WE GO

ENOUGH ALRERDY !
CLOSE TEST

Finally you'll see

If you OPEN a text file that already exists and then WRITE te it (without
first DELETEing the file and re-OPENing it), then you will overvrite at

least a portion of the file.

Unless you overwrite at least as many

characters as existed in the old file, the result is that the new file
contents will be a mix of the data PRINTed to the file on the two

occasions.

First will appear the new characters you FRINTed to the file

this time, and then will follow any portion of the old file you did not
overwrite. To clear all characters from the old file, OPEN and DELETE the
old file before you OPEN it anew. (In the program MAKE TEXT, lines 140
and 150 take care of "cleaning out" any previous text file by the same
name.) To keep programs from overwriting a file, LOCK the file.

READ-ING SEQUENTIAL FILES

The DOS command READ allows you to retrieve a text file. Once a READ is
executed, any subscequent INPUT statements (or GETs in Applesoft) refer to
the specified file instead of the Apple’s keyboard. This Applesoft

program retrieves the rext file SAMPLE creared by the program listed at
the begioning of the preceding section. READ, like WRITE, sust ba
preceded by OPENing the file to be used. The file must be CLOGEd as well.

5 REM RETRIEVE SAMPLE
18 DF = CHR$ (4). REM CHR#(4)
IS CTRL-D
20 FPRINT D& "OPEN SAMPLE"
I8 PRINT D%: "RERD SEMFLE"
48 INFUT A%.BF.CS
52 FOR I =41 TD 16
&8 INPUT W
78 HNEXT I
88 PRINT D¥: "CLOSE SAMPLE™
An OPEN must precede a READ, and an INPUT (or, in Applescit, a GET) must

follow a READ. The OFEN and READ must refer to the same file name. If
you RUN che program wich MON C, I, O in effect you'll see this:

DPEN SAMPLE

READ SAMFPLE

THT HO

*7HI HOD

P?0FF TO THE DISK WE GO

2233 32 8d

e
CLOSE SAMPLE

The program was written explicictly with the SAMPLE file in mind: it
assumes that the text file contains 3 scrings, (AS, BS, and C$ in line 4@)
and 18 integers (W in line 6@). Two question marks are printed when B
and €5 are INPUT because RETURNs separated the INPUT's sultiple responses.

H U unaEgsEgNDEREREEEDEEERDED

A BEAD command is cancelled by the use of any DOS command in a FPRINT
+ The “empty" DOS command (just CTRL-D) will do just fine.

ECATament

of the PR or INN commands also cancels a READ.

The syntax for the READ command {s the same as for WRITE:

READ §

[Hote: READ is also waed with random=access files, see Chapter 8.]

Examples: READ LETTER
READ CAREFULLY

(>

Stopping a READ in Applesoft using CTRL-C will generate a string of

REENTERS .

To avoid this, press the RESET key to stop the program.

Use

An Applesofc program that retrieves text files created by the MAKE TEXT
program 16 on the System Master diskette.
diskerte in your drive and type

LOAD RETRIEVE TEXT

then SAVE the program on the same diskette you used for MAKE TEXT.
program is reslly a companion piece to MAKE TEXT, end it"s simply more
convenient to have them on the same diskette.)

Place the System Master

A LISTing of the program should appear as follows:

5 REM RETRIEVE TEXT

18 DF CHRF {4): REM CTRL-D

28 HOME FRINT "THIS FROGEAM RE
TRIEYES TEXT FILES"®

38 PRINT "CREATED BY THE “MAKE T
EXT® PROGREAM

48 PRINT "MON C. 1.0 IS5 IN EFFECT

S8 FPRINT

68 INFUT “NRME OF TEXT FILE? "“: 2
E

8 PRINT D% "MON C: I.0"

88 FPRINT

98 PRINT DS: "0OPEN " Z%

i88 PRINT D% “READ "; Z3

118 INFUT I

128 DIM AFCI)

139 FOR J =1 T0 1

148 INPUT RASCTY

=8 MNEXT J

i6ft PRINT D¥%: "CLOSE "; 2%

178 PRINT D% "NOMOMN Ci 1. 0"

{The

How type
RUN
and you should see the message

THIS PROGRAM RETRIEVES TEXT FILES

CREATED BY THE “MAKE TEXT PROGRAM.
HON G- 1.0 IS5 IN EFFECT

HAME OF TEXT FILE?
Type in the name of the text file you created using the MAKE TEXT program,

press the RETURN key, and you should be off and running (ocops —— rather,
READing) -

Here's what you'll see if the file TEST, used as a sample at the end of
the last section, is retrieved using the RETRIEVE TEXT program:

THIS PROGRAM RETRIEWES TEXT FILES
CREATED BY THE “MAKE TEXT® PROGRAM
MON 5. 1.0 IS IN EFFECT

NAME OF TEXT FILE? TEST

OFEN TEST
RERD TEST
T4

HERES STRING 1
TAND MY SECOND STRING

70M MWE GO
TENDUIGH ARLRERDY !
CLOSE TEST

NOMON C. 1.0

MORE ON SEQUENTIAL FILES: APPEND AND POSITION

The D05 commands APPEND and POSITION, respectively, allow you to add text
to the end of a sequential text file, and to access information from any
specified ficld within a cext file.

AFPEND allows you to add data to the end of a sequencial text file.

This is particularly useful if you wish to extend the information in a
sequential text file, as in the ANTMALS program discussed in Chapter &
could have. The command OPEN, you will recall, always sets the
position=in-the-file pointer to byte @, the firsc character in the file.
The command APPEND performs an OPEN for you on a file that already
exists, then sets the position-in-the-[ile pointer to one byte beyond the
laast character in the fila.

The following program builds a file called TESTER that contains the two
strings "TEST @" and "TEST 1":

S NN HEEEEHEEDERNEENERDDEHOHE NN ED

5 REM MAKE TESTER

i DF = CHR¥ <4): REM CTEL-D

28 PRINT DF: “OPEN TESTER™

30 PRINT D% "DELETE TESTER"

48 PRINT D% “OFEN TESTERY

S8 PRINT D#:; "WRITE TESTER"

88 PRINT “TEST 8"

Y@ 'PRINT "TEST 41"

88 PRINT DS "CLOSE TESTER™
The following program APPENDs the scrings "TEST 2", "TEST 3" and "TEST 4"
to the file TESTER:

S REM APPEND TESTER

1@ b5 = CHRE® <4);: REM CTEL-D

28 PRINT D#; "APPEND TESTER"

32 PRINT D¥: "MRITE TESTER"™

48 FRINT "TEST 2*

58 PRINT "TEST 3"

68 PRINT “TEST 4*

72 PRINT D¥;"CLOSE TESTER"™

The following program displays the file TESTER:

i@ REHM RETRIEVE TESTER

280 DF = CHRS (4): REM CTRL-D
W PRINT D#: “OPENM TESTER"™

48 PRINT D%: "READ TESTER"

5B FOR I =4 TO'S

A INPUT RS

7B NEXT 1

&8 PRINT D% “CLOSE TESTER™

APPEND must be followed by WRITE (attempting to READ will just cause the
END OF DATA message). The syntax for the APPEND command is doubtless
familinr 1f you've bheen reading straight through this manual:

AFPEND £ [,58] [.Dd] [,Vv]

APPEND, even though it is used only for WRITEing into a text file, does
not cause the

FILE LOCKED

message if the file is locked. That message is given only if you attempt
to actually WRITE to the file.

The DOS command POSITION allows you to WRITE or READ information beginning
in any given field of a sequential text file. The syntax for the POSITION
command is

POSITION £ [,Rpl

where Rp is the Relactive-field position. This command specifies that

05 °a position=in=the=file pointer will be moved forward (only) to the
p=th field ahead of the current pointer position. If p=@, the following
READ or WRITE begins in the current field. Tf p=l, the following READ or
WRITE skips the current field and begins in the next field. If p=2, the

67

following READ or WRITE skips two fields including the current Eield,
before beginning to READ or WRITE. And so on. If your [ile does not
contain any field corresponding to the relative-field position specified
by the POSITION command, the message

END OF DATA

will be displayed, and program execution will scop.

POSITION with cthe Rp parameter spacifies a relacive field position, p
fields ahead of the current field. POSITION must refer to a file that you
have already OPEMad. OPEN automacically sets the position—in-the-file
pointer back to the beginning of the first field. Thus, if POSITION is
used immediately after OPEN, che relative-field position also

corresponds to the actual, or absolute, field position. In no other
case iz this crue.

Like any other DOS command, POSITION cancels a READ or a WRITE. Therefore
POSITION must be used before the associated READ or WRITE.

POSITON actually scans the contents of the file, byre by byte, looking for
the Rp-th RETURN character. If, during this process, it encounters an
"empty" (value @) byte, the message

END OF DATA

iz presented immediacely. It is not necessary to actually INFUT or GET
any such null characcer.

Here is a program that uses POSITION te retrieve varicus flelds from the
TESTER file, created earlier by the MAKE TESTER and AFFPEND TESTER
PrOgTams!

18 REM POSITION TESTER

20 D¥ = CHRE (4)>: REM CTEL-D

3 PRINT D$: “"DPEN TESTER"™

48 PRINT D¥f: "POSITION TESTER: RZ2"
S@¢ PRINT DS; "RERD TESTER"

B8 INPLIT A%

78 PRINT D#f: "PDSITION TESTER.R1"
88 PRINT D#%: “READ TESTER"™

= INPLIT B
188 PRINT Dk "DPEN TESTER"
118 PRINT D% "POSITION TESTER.RZ

]

128 PRINT O¥:"READR TESTER"

138 INPUT C¥
i48 INPUT E*#
158 PRINT Ds$: “CLOSE TESTER"

I1f vou RUN this program with MON C, I, O in effect, you will see:
DFPEN TESTER

POSITION TESTER. B2
READ TESTER
TEST 2

POSITION TESTER.: Rl

&8

I g O EHEEEBHEEEHENSESEERDPAOENENNERED

RERD TESTER

ITEST 4

ODFEN TESTER
POSITION TESTER. R3
READ TESTER

'TEST 3

PTEST 4

CLOSE TESTER

Are you surprised at the results? Remember that the current fleld is
relative-field position number @. Also, remesbher that each INPUT caunes
one field to be READ inte the Apple, and advances the
position=in=-the-file pointer to the beginning of the next field.

BYTE-ING OFF MORE

Hote: the following section is not for beginners, and sequential files
can be used perfectly well without a knowledge of the parameters discussed
here.

The S cosmands WRITE and READ can be used with a Byte parameter to
WRITE or READ information starting from any place in a text file == if
vou know where that place is. The trick invelves knowing at exactly which
byte in the file you want to start (each byte contains one character’s
ASCII code). To do this, you must know exactly how you have stored
information into the file. You must count all RETURNs, commas, spaces and
other characters in the file when figuring out where to begin. The
problem is even more difficulc for WRITE, because you sust also know where
to end.

The B parameter is an actual or absclute position in the file unless R is
specified. If R is given, the B parameter is the actual position within
the specified fiald.

The command

WRITE THISMONTH, B27

secs the position-in=the=file pointer to the twenty=eighth byte of the
file named THISHOMTH (the first byte i{s number @). Characters sent to the
disk by a subsequent PRINT command will replace an equal number of
characters that already existed in the file, beginning with the character
in the 28th byte.

<>

This over-writing is not confined to the corremt ficld. TIf you PRINT
fewer than the number of characters remaining in the current field, you
will ereate two new fields: the field you just PRINTed, followed by the
tail=end of the field you were over=writing. If you PRINT more thanm the
number of characters remaining im the current field, you will over-write
some of the characters at the start of the pext field: the current field
will then be longer, and the next field shorter than before.

o9

It is also possible to WRITE into bytes that are beyond the last byte of
an existing sequential text file. An attempt to READ the {ntervening
un-written bytes will cause the

END OF DATA

mesgage to be displayed, and your program will stop. See the discussion

of READ with the B parameter, for information on accessing sequential text
file fields that are not next to each other.

The ayntax for this command is

WRITE £ [,Bb)

where the B parameter specifies the file byte at which characters sent by
the next FRINRT command will begin replacing file characters. The default
value of b is @, the first byte in a file. Byte b is an actual, or
absolute, position within the file. The B parameter may aspecify a
position either before or sfter the current position-in-the-file pointer.
[Note: this command is also used with random=access files. See Chapter 8.]

Similarly, the command

READ LASTMONTH, B32

sets the position-in-the-file pointer to the thirty—third byte of the file
named LASTHONTH (again, the first byte is number @#). A subsequent TNPUT
command will cause all characters in the next field (i.e. up to the next
RETURN character), beginning with the character whose ASCII code iz stored
in the file“s 33rd byte, to be READ into the Apple. If the 33rd byte does
not contain the first character of a fiecld, only the remaining characters
in thar field will be READ.

Syncax for this command is

READ £ [,Bbl

vwhere the B parameter specifies the file byte where the next INPUT or GET
command will begin reading characters. The default value of b is @, the
first byte in a file. Byte b is an sctual, or absolute, position within
the file. The B parameter may specify a posicion either before or afrer
the current position-in-the-file pointer. | Note: this command is also
used with random-access files, see Chapter A. |

The following program sets the position-in-the-file pointer to byte 14
{the fifteenth byte) in (1le TESTER, which was created carlier by the
program MAKE TESTER. Then it WRITEs the string “"APPLE COMPUTER". Note
the familiar sequence: OFEN, then WRITE and PRINT, and finally CLOSE.

. REmM BYTE WRITER
i® b = CHRF¥ (4>: REM CTEL-D
28 PRINT D% “"0OPEN TESTER"
38 FRINT [¥; "WRITE TESTER: B14"™
98 PRINT “"AFFLE COMFUTER®
58 PRINT D%: "CLOSE TESTER"
With MON C, I, O in effect, RUN RETRIEVE TESTER to see how the previous

program has changed the file TESTER. As you can see, the field containing
APPLE COMPUTER has completely over-wricten the fields that contained TEST

70

3 and TEST 4, as well as the first character of the field that contained
TEST 5. MAs there are now only four fields in all, the END OF DATA message
was displayed after the fifth INPUT command.

The following program sets a pointer to byte 1B in the file TESTER, just
modified by the preceding program. Then this program READs to the next
RETURN in the file. Again the familiar format: OPFEN is followed by READ,
next come INPUT statements (or, in Applesoft, GETs may be used) and
finally the file is CLOSEd.

9 RER BYTE RERDER

ig DF = CHEE (43 REM CTRL-=D
28 PRINT D%: “OPEN TESTER®

B PRINT DF; "RERD TESTER. E18"
468 INPUT A%

S8 PRINT D%: "CLOSE TESTER"

Try to predict what vou will eee, before wyou RUN this program.

Fi

T4
13
76
)

/8

CHAPTER 7
AUTO APPLE

Controlling the Apple via a Text File: EXEC
Creating an EXEC File

Capturing Programs in a Text File

Converting Machine-Language Routines to BASIC
MAXFILES and Integer BASIC Programs

EXECutive Session

73

To better understand the contents of this chapter, it is suggested that
you firet read Chapter 6, on sequential text files.

CONTROLLING THE APPLE VIA A TEXT FILE: EXEC

The DOS command EXEC is similar to RUM, except that the disk file used by

an EXEC command is a text file that contains commands or program linesa,
including BASIC statements, as if they were typed at the keyboard.

To iniciate n demonstration of some EXEC command abilities,
LOAD EXEC DEMO

from your System Master diskette and then SAVE Lt on a diskerte that’s not
write-protected. Leave the un-write-protected diskette in the drive,
gince the program WRITEs a text file.

Kext RUN the program. You should see the message

<L EXEC DEmMO 2>

THIS PROGRAM CEEATES A SEQUENTIAL TEXT
FILE NAMED "DD'ER" CONTRINING SEVERRL
STRINGS: ERCH A LEGAL APPLE IT COMMAND.
HHEMN %YOU TYPE
EXEC DOYER
THEN: THE COMMANDS IN FILE DO'ER TRKE
CONTROL OF YOUR COMPUTER ERCH COMFAND
MILL BE EXECUTED JUST RS IF IT HAD BEEN
I¥FED AT THE EEYEBOARD. THE DOS MANUAL
DESCRIBES THE PROGEAM IN MORE DETRIL

<< HRPPY EXECUTING 22
PRESS THE SFACE BRR TD MAKE THIS
PROGRAM CREATE THE FILE DOER
IF ¥YOU WISH TD STOF THIS PROGREAM NOiW,
YOU MAY PRESS THE ESC KEY

Press the Apple”s space bar, and after & brief pause you should sea the
disk drive’s IN USE light come on as the program writes the DO'ER file
onto the diskette. Now type

EXEC DO’ER

prass the RETURN key. Your Apple will begin a solo performance based on
the seript in the DOER file.

Here's a bricf summary of the major things DO’ER doas:

First DO'ER issues a MON C, I, 0 command, so you'll be able
to see what happens.

Second, a three=line program is written and saved on diskette
under the name NEW PROGRAM!! The program is then LISTed.

How a FOR-NEXT loop is execured to take up some time, so
you get a chance to look at the screen before the
activity continues.

74

Hext DO"ER uses the INT command to enter Integer BASIC,
LOADs the program COLOR DEMOS, and LISTs it-.
At this point, DO'ER uses CALL =155 to enter the Monitor and
executes some machine-language inscructions before using
the FP command to enter Applescft.
From Applesoft a MON C,I,0 command is executed, then
NEW PROGRAM!! is RUN, modified, LISTed (again a FOR
loop allows you to take a look at the screen) and SAVEd
using the name EVEN MORE RECENT PROGRAMI!
Lastly, the program NEW PROGRAM|| ias DELETEd and the CATALOG
(including the new addition EVEN MORE RECENT PROGRAM!!)
16 displayed.
And you won't even have to lay a finpger on the keyboard (unless your
CATALOG has more thanm 18 entries, in which case you need to press the
space bar to see the balance of the CATALOC entries).

CREATING AN EXEC FILE

Here“s a step by scep example to illustrate how to create an EXEC file
named DOIT that contains the following commands:

LIST 2@, 5@

REUN AWAY

CATALOG

First create and SAVE an Applesoft program called AWAY to use in the sbove
demonstration:
5 FEM AWAY
16 PRINT "RHAY AMARY WITH RUM BY
GiLim™

Next write and SAVE the following program, called MAKE EXEC, thac will
create a text file called DOIT. When you later EXEC DOIT, the commands
your MAKE EXEC program has PRINTed into the DOIT text file will tell Apple
to RUN the AWAY program for you. Hotice that the commands which are
PRINTed into the DOIT file, for later EXECIng, are not preceded by a
CTRL-D.

5 REM MAKE EXELC
10 DF = CHEf# (4): REEM CHE®#{4>» [I5

CTRL-D
28 PRINT D$: “OPEN DOIT®
2B PRINT D& "RRITE DOIT™
48 PRINT “LIST 28, 58"
S8 PRINT "RUN AHAY"
BB FRINT "CATAHLOG™
7@ PRINT D#%; "CLOSE DOIT"

Afcer you have MAKE EXEC and AWAY both SAVEd on & diskette, type the
command

RUN MAKE EXEC
to create a sequential text file named DOLT.

75

Type the command

EXEC DOIT

to cause the commands in the f£ile DOIT to be executed one by one, fjust as
if they’d been typed in from the keyboard. Again, notice that the
commands now being EXECuted were not preceded by a CTRL-D in the program
MAKE EXEC. Firsct lines 20 through 5@ from the program currently in memory
(probably the program MAKE EXEC) are LISTed. Then the program named
"AWAY" is RUN, and finally the CATALOG on the diskette is displayed.

CAPTURING PROGRAMS IN A TEXT FILE

Here’s a far more useful example of using the EXEC command: it allows you
to capture program listings as text files. Such a program can be used for

* translacting Integer BASIC programs into Applesoft

* renumbering parts of programe and EXECing them anywhera
into another program

inserting favorite subroutines into programs from a
subroutine file on the diskette by EXECing the file
"appending" one program te another

repairing programs that have become partially unreadable
(you can capture the good portiom im a text file, re=hoot,
then EXEC the program portion back into memory)

The line numbers 2270 and 5130, following the LIST command in line & of
the CAPTURE program, should be replaced by the line numbers of the program
in memory that you wish to capture. The name of the sequential text file
containing the liscing is LISTING.

i REM CAPTURE

2 DF = CHR$ (45>: REM CTRL-D
PRINT D$; “OPEN LISTING®
PRINT D% "MRITE LISTING"

5 POKE 3% 38
& LIST 2278,5138

FRINT D& “CLOSE LISTING®
&8 TEXT : END

We made the line numbers of this program very close together, so that you
can add these lines to a program already in memory, or anywhere within
your program that you have eight free line numbers. You could just as
easily put all the lines of CAPTURE above the highest numbered line in
your program.

CAPTURE creates a text file containing commands that are preceded by line
numbers. When you EXEC that text file, the numbered commands will not be
executed. Instead, just as if you had typed cthose lines in from the
keyboard, the lines are stored as o program in Apple’s memory. Once
captured in a text file, & program can be modified and then EXECed back
into Apple’s memory. Unlike LOAD or RUNM, EXEC does not delete a program
that is already in memory. Using CAPTURE, vou can captura a program im a
text file from one language, then EXEC the program back into another
language {of course, the program may not run without some changes =—-—
there”s somewhar different syntax for Inmteger BASIC and Applesofr). You

76

F M EEEEHEEHEHEHNHNEEIEESENHEHEENEEEERDRE D

can also use EXEC this way to add new lines to an existing program in

memory. In fact, you can save a liscing of CAPIURE in a text file named
LIST SAVER, say, and then EXEC LIST SAVER any time you wanted to add the
CAPTURE program to a program in memory.

CONVERTING MACHINE-LANGUAGE
ROUTINES TO BASIC

Here”s another useful program that will take a machine-language routine
and convert it into a BABIC progrem portion which FOKEs the
machine-lenguage routine into memory. The program portion can be used as
part of either an Applesoft or an Integer BASIC program, to put the

machine=language routine into memory each time the BASIC program is run.

5 REM CODE-PDKES WRITER

i8 DF = "7 REM CTRL-D

15 PRINT D#%: "OPEN CODE-FOKES®

28 PRINT D¥; "DELETE CODE-PODKES®

23 PRINT D#: "OPEN CODE-POKES"

38 PRINT D#: "WRITE CODE-POKES™

48 LINENUMEER = 7BE8

282 FOR PLACE = 758 TO 783

68 COUNTER = COUNTER + 1

@ [IF COUNTER = 18 THEN COUNTER =
i

88 IF COUNTER € > 1 THEN 128

98 PRINT

182 PRINT LINENUMBER:

118 LINENUMBER = LINENUMBER + 1

128 PRINT " POKE “;PLRCE:".":; PEEK
CPLACEX s T 2%

1386 NWEXT PLACE

135 PRINT

148 FPRINT D%; "CLOSE CODE-FDKES"

iS58 END

When you use this program, the number in line 4@ should be changed to
contain the line number of your BASIC program where the POKEing program
portion is to start. The FOR loop in line 5@ should contain the starting
and ending decimal memory locations of the machine-language routine you
wish to convert.

Once you've typed in the program, RUNning it will creace che cexc file
CODE-POKES. MNow use the command

EXEC CODE-POKES

to place your machine-language-POKEing program portion into any other
program, beginning at the line number previously specified. The program
CODE-FOEES WRITER will work with either Applesoft or Integer BASIC.

77

MAXFILES AND INTEGER BASIC PROGRAMS

An EXEC file must be used if you want to increase MAXFILES from inside an
Integer BASIC program without erasing your program. Hera“s how. Use the
procedures described above to create an EXEC file, ler’s call it FILE.EX.
The file FILE.EX ghould set HIMEM helow the area that will be taken by the
increased MAXFILES (595 bytes per additional file), then delete the part
of the program that causes execution of the EXEC file.

FILE.EX should contain the following commonds to allow for 5 files on a
48K syatem:

CLR

HIMEM: =-2B326
DEL 10,2¢
RUN

As shown in Table 2 of Appendix D, DOS wsually sets HIMEM for a 48K saystem
to =27136; to allow for 2 more 595 byte buffers than wsual, HIMEM must be
set to -27136 - (2 * 395) or -28326.

The first lines of the program would be as follows;: note that what appears

as CTRL=D is created by holding down the key marked CTRL while typing the
letter D.

1@ PRINT "CTRL-D EXEC FILE.EX"
29 EMD
@ PRINT "CTRL=-D MAXFILES 5"

EXEC-UTIVE SESSION

The usual syntax for the EXEC command is

EXEC £

where f is the name of a sequential text file containing BASIC commands or
program linea. Examples of this usage appear throughout the earlier
sections of this chaprer. EXEC with this syntax causes the first field of
file £ to be read into cthe Apple as if it were being typed on the
keyboard. When the first field's RETURN character is "cyped”, the Apple
attempts to execute the field”s contents as a BASIC command, or enter the
field’s contents as a BASIC program line. The type of BASIC (Integer or
Applesoft) is not changed by EXEC unless the file conteins an FP or INT
command. When execution has ceased on the first field, the second field
of file f is read into the Apple and treated similarly. The action comes
to a atop when the last field of file f has been read.

The EXEC command cannot be atopped by CTREL-C.

Only one EXEC file can be OPEN at any one time. If you are EXECing &
file, and one of the commands thus executed iz another EXEC command, the
first EXEC file is immediately CLOSEd. Thereafter, it iz the second
EXEC command that 1s being executed.

If a file being EXECed contains a coemand cto RUN any program, EXEC will

wait patiently until the program ends. Then the next EXEC file command
will be executed.

78

H HHHEEHEHEEEEHEHEUNNSEEHEEEAEENEERENEBD

<

However, if a program is RUNning while an EXEC file is OPEN, any IHPUT
statement in the program will take the naxt fisld in the file being EXECed
as its response, ignoring the keyboard. Worse yet, if that responsc is an
immediate-execution DOS command, the command will be executed before the
program continues. Results can be very confusing.

If you interrupt a RUNning Applesoft program by typing CTHL-C while an

EXEC file is OPEN, the remsinder of the EXEC file will wsually not be
executed.

If any 'field of an EXEC file cannot be interpreted as a valid BASIC
command or program line, the message

SYNTAX ERROR

is generated, and the next field is read into the Apple. Thus, you can
EXEC any text file, whether or not it contains BASIC statements (firse

be sure you've SAVEd any program in memory). In MON C, I, O mode, this
can provide a crude but handy tool for quickly cxamining the contents of a
text file.

The EXEC command can also be used with the Relactive-field position
parameter, in a way thar is a bit different from POSITION"s use of that
parameter. The syntax for this use is

EXEC E [,Rp]

where Rp specifies thar file f is to be EXEC'd starting in the p-th field
of fils f. Since EXEC always seta the position-in-the-file pointer to the
firast character of the file, so the parameter Ep always indicates che p-th
field relative to the file’s beginning. Thus p always corresponds to

the file’s actual, or absolute, field. K@ indicates that EXECing begins
with the file‘s Eirst Field, Rl indicates EXECing begins with the second
field, etc.

&

Hote that this is different from POSITION s use of the R parameter,
vhere R3 is a relative field only, and may Indicate different actual
file fields at different times in a program.

<

EXEC MYFILE, Rf

genéracaes an

END OF DATA

message if the R parameter specifies the second field beyond the file’s
end. (If the first field beyond the file’s end is specified, nothing
happens) .

79

——————— ——

BN NN EENBNARAANARAAEEANARARRAR |

82
82
B84
86
83

CHAPTER 8

USING RANDOM-ACCESS
FILES

Random=-Access Files: How They Work

A Specific Record

Multiple Records

A Demonstration: The RANDOM Program
WRITEing and READing Random-Access Files

B1

For a better understanding of the information presented in this chapter,
it is suggested that you first read Chapter 6, on Bequential files.

RANDOM-ACCESS FILES: HOW THEY WORK

Random=access text files are like a collection of equal-gized cells in a
honeycomb —- some cells may be full, others may be empty. Each "cell" is
called a record. When you create a random-access file, you must specify
the standard size for the records the file is to contain.

Unlike the fields in sequential files, which may be of almost any length,
the records in a random-access file are of specified fixed length. The
first time you WRITE to any particular record in a file, enough space is
ger aside on the disketre for a complete, standard-length record, whether
or not the record {s actually filled. So random-access files don"t
necessarily represent an efficient use of space. However, since these
files are set up in such a regular fashion, it"s fast and easy to retriave
or modify information from any part of the file -- hence the name
"random-access" file.

Random-access files should be used in applications requiring fast access
te various parts of the file, or where individual pileces of information in
the file need to be changed fairly often. For example, a random—access
file is particularly suitable for maintaining a mailing list.

Random-access files are created and retrieved in a manner very similar to
that used for sequential files. The main difference iz that certain
commands have additional parameters: OPEN requires an L (Length of record}
parameter, while READ and WRITE each use an R (Record number) parameter.
Some sample programs will be presenced and discussed before getting into
details on creating and retrieving random—-access files and how the new
parameters work. More technical information about random-access text
files may be found in Appendix C.

A SPECIFIC RECORD

How can you access a specific record in a random-gccess file? The
following pair of Applesoft programs {llustrates how DOS allows you te do
this. The first program requests a name (N$), a telephone nusber (P$) and
a zip code (Z5), then sends them to record | of a file called MAILER:

ié REM MAKE MRILER

20 DF = CHR¥® (4): REM CTRL-D
8 INPUT “NAME: "1 N§

48 INPUT “PHONE "i P¥

98 INPUT "ZIP CODE:. “:Z¥F

&8 FRINT Ds: "OPEN MRILER. LZ2A"
7 PRINT D% "HRITE MAILER: RL™
88 PRINT N¥: PRINT P%$: PRINT Z%
98 PRINT D%;: "CLOSE MRILER"

B2

Line 28 places a CTRL-D in the variable DS, as usual.

Linea 3@ through 5§ request the information to be stored.
Do not type any commas or colons in your responses.

6@ OPEMs a file called MATLER, with 2¢@-byte long records.

78 prepares for recording information in record 1.

Bf sends NS, PS5 and Z5 to the diskette == since record | was
specified in line 7@, all three pileces of information
are recorded in record 1, separated by RETURNs.

Line
Line
Line

Line

With

9% CLOSEs the file.

MOM C, I, O in effect, when the progrem is RUN you'll sees
HAME : AMY DORKS

FHONE
ZIP CODE: 93514
OFPEN MAILER. L2698
HRITE MAILER:R1
AMY DOARKS

(4253 S55-1018
95014

CLOSE MAILEE

(425> 555—-1818

Record | of the file MAILER cen be retrieved by this program:

When RUN with MOW G, I, 0, you'll see the following.

18 REM RETRIEVE MRAILER:H

28 D¥ = CHR$ (42
38 PRINT D¥: "OPEN MRILER. LZ288"

REM CTRL-D

48 PRINT D¥; "READ MAILER. R1"
S8 INPUT N1®.P15. 215
7B PRINT D& "CLOSE MAILER"®

As usual, the pair

of question marks indicates an INPUT with more than one response.

OPEN MRAILER. L2089
RERDR MAILER. R1
AMY DOAKS
F7C425) 555-1019
TrOS014

CLOSE MAILER

And here i a slightly different program to retrieve record 1 of MAILER.

18 REM
20 D§ = "~
CTRL-D

38 PRINT D¥%; "OPEN MAILER.LZ88"

RETRIEVE HAILER:B
REM GQUOTES CONTHRIN

48 PRINT D¥; "READ MATLER. R1“

38 INPUT N1¥

68 [INPUT Fi%

8 INPUT Z1%

88 PRINT D$; "CLOSE MRILER"
98 END

The program that created the random-access file MATLER wrote te a single
record In the file, saving three different pieces of information separated
by RETURNs. The next program demonstrates writing to several records: in
particular, record numbers 12 through 15 of a random—access file called

RA=FILE.
5 REM MAKE RA-FILE
18 D¥ = CHR¥ (d4>: REM CTRL-D
28 PRINT D% "OPEN RA-FILE"
I8 PRINT Df: "DELETE RA=-FILE*®
48 PRINT D¥: "OPEN RA-FILE, LIZ@"
53 FOR T = 12 TD 15
&8 PRINT D¥: "WRITE RA-FILE:. R“: I
78 PRINT "NAME ADDRESS "l
88 NMEXT 1
38 PRINT D#: "WRITE RA—-FILE. R13"
188 PRINT "DOS VERSION 3 27
11& PRINT D#$ “"CLOSE RA-FILE"™

Line 1@ scts DS to CTRL-D.

Lines 2@ and 3¢ make sure RA-FILE is a new file

Line 4@ OPENs the file RA-FILE, whose records will each be
3@ bytes in length.

Lines 5@ through 8@ create a loop that WRITEs the information
HNAME ADDRESS
followed by the record number, for records 12 through 15
Hote that you must specify each record in a new WRITE

ecommand, before having PRINT send characters to that
record.

Lines 9% and 1#9 change the informacion in record 13 to the
text given in line 1@9"s PRINT command.

Line 11# CLOSEs the random—access file HA-FILE.

If MON C,I,0 is in effect when the program is RUN, you’ll sees the
following:

OFEN RA=-FILE
DELETE RA-FILE
OPEN RR-FILE. L3@
HRITE RA-FILE. R12
NAME RADDRESS 12
WRITE RA-FILE: R1Z
NAME ADDRESS 12
MREITE RA-FILE., Ri14
NAME ADDRESS 14

i HEHEENEHEHEEBEHHEHEENNEDEERDEEGEREENEERE

MRITE RA-FILE. R15

NAME ARDDRESS 15

HRITE RA-FILE: RF13

DOS YERSION 3 2

CLOSE RA-FILE
In a similar fashion, you can READ information from a selected record or
records of a text file. The next program retrieves records 12 through 13

of the file called RA-FILE, trying, on line 68, to find which recordis)
contains the lecters "DOS" ae the first three characters.

5 REM RETRIEVE REA-FILE

10 DF = CHRES {(4): REM CTRL-D
28 PRINT D$: “OPEN RA-FILE. Lza"
38 FDR J = 412 TD 415

48 PRINT D%: "READ RA-FILE. R":J
S8 INPUT R%

68 IF LEFT# <R%.3) = "DO5" THEN
PRINT “RECORD “: Ji“ WARS CHA
NGED. "

7 HEXT J

88 PRINT D% "CLOSE RA-FILE"™

Line 1§ sets up CTRL=D in D35.

Line 2@ OPENs the text file RA-FILE, whose records are 3@-bytes
long (thac"s what we specified whan the file was
created in an earlier program, remember?).

Lines 3@ through 78 READ records 12 through 15 of RA-FILE.
Hote that you sust specify each record im a new READ
command , before a subsequent INPUT will read characters
from thet record. 1In line 5@, each record comes in from
the disk as an ASCII string terminated by a RETURN.
Line 6@ checks the 3 leftmost characters of the INPUT
string AS from record r, to see 1f the word "DOS" ia
there. If it is, the message "RECORD r WAS CHANGED."
i printed and the search continues.

Line 80 closes the file.

Hare"s what you”ll see when you ROUN the program, 1f MON C, I, 0 is in
effect:

DFEM RA-FILE, L39
READ RA-FILE. R12
THAME RADDRESS 12
READR RA-FILE, R13
0SS VERSION 3. 2
RECORD 13 WAS CHANGED.
READ RA-FILE. R14
NAME ADDRESS 14
RERD RA-FILE. Ri15
TNAME ADDRESS 15
CLOSE RA-FILE

Norice that when the file was retrieved only records that had been written
to were examined. If you had asked for record & in RA-FILE, you would

have received the

END OF DATA

message, since no information had been written te that record of the file.
Similarly, had you tried to INPUT more than one field from any of the
existing records you would have been given the same message: each of
records 12 through 15 containg only one field.

A DEMONSTRATION: THE RANDOM PROGRAM

Last but by no means least, the System Master diskette contains a program
called RANDOM that uvses a random-access text file to demonastrate a asmall
inventory control scheme. And by small we mean small: the program can
handle at most 9 parts. This keeps the program simple. The Apple, of
course, 1s capable of handling thousands of parts im an inventory.

First the program coples {tself and the random-access text file APPLE
FROMS used to keep track of the inventory, then it automatically RUNs the
program for you. You can list one or all items in the inventory. You can
also change items, either one at a time or all at once. Here"s how it

works. Remember to press the RETURM key each time vou complete &
CRSPOMSE.

1) From the System Master,
RUN RANDOM

and you should see the message

THIS DEMONSTRATION WILL NOT EXECUTE ON
A WRITE-FEOTECTED DISKETTE SUCH RS

YOUR DOS SYSTEM MASTER (VERSION = 22
FOR YOUR CONVENIENCE: FPROVISIONS HRVE
BEEN MADE TO COPY THIS PROGRAM AND ITS
CATA TO ANOTHER DISKETTE

PO YOU WISH TO DO THIS NOW? Y OR N> ¥

If you type W for "no" in response to the above message,

you“ll find vourself back in Applesofr.
1) Press Y FOR "yes". You’ll see the message
NOl READING DATH
Followed by the message

INSERT AN INITIRLIZED DISKETTE: THEN
PRESS THE RETURMN KE¥ TO BEGIN TRANSFER
3) Remove the System Mastor diskette, and place a

non-write-protected diskette in the drive, then press

the RETURN key. You’ll perhaps catch a glimpse of
the message

aé

and then the program will begin execution.
4) Mow you should see this:

APFPFLE FPROMS

COMMAND HUMBER
LIST |
CHANGE 2
EXIT 3

CHOOSE MNUMBER (1 - 20 1
Press 1 and you should sce this message:
PART NUMBER 1-9 (@=ALL) &

5) Press @, to get a list of all "parts" in this "inventory
system" and you"ll sae

PARTE MNAME SIZE IN STOCK

1 FARALLEL FPRINT 256 S

2 COMMUNICATIONS 255 1258

3 CNOT AYRILABLE> 256 2]

-+ (NOT AVARILABLE}> 2586 a8

3 DISK BOOT 2356 432

e STHATE MACHINE 256 48

r SERIAL PRINTERL 256 a8re

g SERIAL PRINTERZ 312 a1l

2 CENTRONICS 255 1298

PRESS THE RETURN KEY TO CONTINUE

When you’re ready to return to the list of options, press
the RETURN key.

6) Try out the various program options. Choice 1 allows you
to list parts by pact number, one at a time, as well as
all at once.

Choice 2 allows you to change any or ell part nomes and
descriptionsa. For example, suppose part 3 should be
named COSMIC GLUE, size 56, with 1234 in stock. Here's
how to revise the entry for part 3:

select option 2, CHANGE

select part number 3

the old part name is displayed, with the cursor at its

start, to allow you to enter the new name; when you

87

press the RETURN key the cursor will move to the right
and perform similarly for part size and quantity

to use the currently existing name or size or quantity,
just press the RETURN key by itself.

Choice 3 will step the program.

WRITE-ING AND READ-ING RANDOM-ACCESS TEXT FILES

When used with random-access files, the CLOSE command works exactly as it
does with sequentisl files (see "OPENing and CLOSEing Sequential Files" in
Chapter 6&). However, the syntax for OPEN has an additional parameter, the

L parameter, which is required.
OFEN £ ,Lj [,58] [,Dd] [,V

The "L" stands for "Length-of-record"; the number j indicates how many
bytes (choracters snd digits) ore to be alletted to each record in the
random-access file you're creating (or, If you're retrieving a file, the
number that were allotted when the file was created). 1f the L option is
omitced, § is assigned che default value of 1. The number j must be in
the range 1 through 32767.

©,

When you OPEN a file prior to READing, if you specify a different Length
paramater, than you specified when you OPENed prior to WRITEing the

file, DOS will blindly use the new Length parameter to caleulate raeceord
positions within the file. You will have to keep detailed writtenm
documentation on the struccture and contents of your files (some
programmers keep such information in record @ of che file). It’s helpful
to always include the Length parameter in each file’s name, with such
names as

RANDFILES:L.2¢
STOCKLISTS-L1g¢
DIRECTORIES (L5@)

There {8 no way to find the length of a record in a random-access file:
you must make this informacion part of your documentation.

<

Records should never be longer cthan the number of bytes specified by the L

parameter: records may be partially over-wuritten or combined with
confusing results-

WRITE and READ each have an B parameter, to be used when creating or
retrieving particular records in random-access files.

WRITE £ [,Rc)
READ £ [,Rr)

Examples: WRITE LEGIBLY, R3,
READ FAST, R13

&8

The Br (Record) parameter 1s used to create (with WRITE) or recrieve
(with READ) the rth record of the file. The default value of r is @,
specifving the first record of a file.

Using CTRL=-C to stop a READ in Applesoft cavses a string of REENTERs to ba
generated: press the RESET key instead.

In some respects, each separate record in a random—access text file may be
treated as a short sequential file. WRITE and READ can be usced with a
Byte parameter in addicion to their R parameter. The Byte parameter
specifies the beginning byte of the specified record, for the next PRINT
(after WRITE) or INPUT or GET (after READ).

WRITE £ [,Rr] [.Bb)
READ £ [,Rr] [,Bb]

Lf specified, the B (Byte) parameter causes WRITEing (or READing) to
begin at the b=th byte of the specified record. The defaulc value of b is
@, the firat byte of a record. The B parameter may specify a posicion in
the record either before or after the current position-in-the-file
pointer. Using the B parameter necessitates a thorough, detailed,
byte=by=byte knowledge of the contents of each record in the file.

Once READ or WRITE has moved the position-in-the-file pointer to a
particular record, POSITION can also be used to move the pointer ahead
fonly) to further relative-field positions within the record. However,
POSITION cancels either WRITE or READ mode (without changing the
position-in-the-file pointer), so another WRITE or READ command (this time
with no parameter) is necessary to re-instate that mode.

Datails on how information is stored on the diskette in general, and in
random-access files in particular, may be found in Appendix C.

g9

CHAPTER 9

USING MACHINE LANGUAGE

92
52
93
93
94

Machine Languape Files
BSAVE

ELOAD

BRUN

The RWTS Subroutine

1

FILES

MACHINE LANGUAGE FILES

DOS allows you to store on diskette, and retrieve from diskette, the
information in your Apple II's memory. You have already seen the DOS
commands SAVE, LOAD snd RUN: chese commands deal with the contents of
Apple’s program memory, interpreted as commands in BASIC programs. The
DOS commands discussed in this chapter -- BSAVE, BLOAD and BRUN -- perform
similar funccions, but they deal with the contents of sny portion of
Apple’s memory, in its uninterprated, raw binary-and-hexadecimal form.

The B before each of the following commands stands for a Binmary file; a

B also precedes the name of binary files in the CATALOG. A binary file is
just an exact, bit-for-bit copy of the information that was sctored in a
specified range of Apple memory locations. Those locarions may have
contained a machine-language program, binary data, or a bic-mapped
"picture" from Apple’s high-resolution graphics screen.

BSAVE

The BSAVE command creates a file named f and stores all the contents of a
gegment of memory. The syntax is

BSAVE f ,Aa, Lj [,8s] [,Dd] [,¥v]

wvhere ag usual the 5, Iy and V parameters stand for slot number, drive

number, and volume number. Note that the A Bnd L parameters are mot
optional.

The A parameter specifies the starting Address (in either decimal or
hexadecimal code) of the memory portion to be stpreﬁ on diskette. A

‘dollar sign (§) must precede an address expressed in hexadecimal. If
the A parameter is less than @ or greater than 65535, a

SYNTAX ERROR

message is displayed. Therefore, equivalent negative addresses may not
be used with this command. Within the range @ through 65533, no error
message 1s generated 1f the A parameter specifies a starting memory
address that does not correspond to actual, installed memory chips. In
practice, it 1s not useful to specify an A parameter greater than the
maximum memory address in your Apple (49151 or $BFFF on a 4BK system}.

The L parameter specifies the Length, in bytes, of the memory portion to
be stored. If the L parameter is less than @ or greater than 635353, a
BYNTAX ERROR

message is generated. If the L parameter is @ or in the ranga 32768
through 63535, &

EANGE ERROR

message is generated. 32767 is the grearest number of bytes that can be
stored in'a single field on the diskette. 1If you wish to store more than
12?&1 _memory locations, use two BSAVEs. Within che ramge 1 through 32767,
no error message is generated if the L parameter specifies a range of
memory addresses, not ell of which correspond to actual, installed memory
chip. In practice, it is not uwseful to specify a range of memory
addresses extending beyond the maximum memory address in your Apple (49151
or SBFFF on a 4BK ayatem).

These examples each create a file named PICTURE containing an lmage of the
second high-resolution graphics area of the Apple’s memory. They are
operationally identical, but their starting address and length parametera
are given in different forms.

BSAVE PICTURE, AS4dg@, Ls2¢gq
BSAVE PICTURE, Al63B4, LBl192
BSAVE PICTURE, Al6384, L52p@4
BSAVE PICTURE, AS4QQQ, LBL92

The BLOAD command returns the contents of a Binary file to your Apple I1°s
memory. BLOAD does pot erase a BASIC program in memory, unless the data
is BLOADed into the particular portion of memory containing your program.

The syntax is

BLOAD £ [.Aa] [.8s] [.Dd] [,Vv]

where the 5, D, and ¥V paramcters are as usual. If the A parameter is
used, then the Binary file“s contents replace a portion of the existing
contents of Apple’s memory, beginning at address a. If the A parameter is
not wsed, the file"s contents are returned to the same Apple memory
locations whose contents were originmally BSAVEd. See BSAVE for a complete
discussion of the A parametar.

Assume the binary file PICTURE contains a high=resolution picture. Either
of these axamples places the plicture into the first high-resolution
graphics area of the Apple’s memory:

BLOAD PICTURE, A8192

BLOAD PICTURE, AS204y

Either example also clobbers the RAM version of Applesoft.

Hote: a machine=language program maoy no longer be executable
1f it is moved to & memory location different than the
one from which it was saved.

The syntax of the BREUN command is the same as for BLOAD:
BRUN £ (.Aa) [.8s) [,Dd] [,Wv]
The Binary file f should be a machine-language program.

Firat BRUN does a BLOAD. If the A parameter is given, the file's contents
are placed into Apple’s memory beginning at location a. If the A
parsmeter is not used, the file’s contents are returned to the same Apple
memory locations whose contents were originally BSAVEd. See BSAVE for a
complete discussion of the A parameter.

After BLOADing the file, BRUN does a machine language jump (JMF) to

location a. If the file was a machine-language program, this begins
execution of that program.

93

Normally, user access to and from the DISK II is restricted to the use of
DOS. However, another method of accessing the DISK II is aveilable to

machine language programmers. You may sakip this section 1if :."D'IJ‘I.'E not
familiar with machine language.

The DISE II can be accessed directly from machine language through the use
of the BWTS subroutine, which is part of the DOB. The "RWTS" atands for
"Read or Write a Track and Sector”. In the following explamation,

any numbers preceeded by § are hexadecimal numbers.

Every diskette inicialized by the DISK II drive is separated into 35
tracks, numbered @ to 34. These tracks may be thought of as grooves on a
phonograph record, except that they are not connected with each other.
Basically, the tracks are arranged In separate concentric eircles, with
the large hole in the center of the diskette forming the common center of
the circles, Track @ is on the outer edge of the diskette, while track 34
is nearest the center. The disk drive has a "head" that acts very much
like the needle on a record plaver, except that the head on the disk drive
is magnetic. This head moves to different tracks om the diskette, where
it either reads information off of tha diskette, or writes information
onte the diskecte.

Each track on the diskette consiscs of 13 sectors. Sectors are
pre-defined groupings on each track, that allow the user to werk with
single blocks of 256 bytes, rather than with the entire 3328 bytes that
fit on one track. The sectors within a track ere individually numbered,
consecutively, § to 12 around the diskette. As the diskette spins, each
sector will pasas underneath the head, at which time the hesd may write to
or read from that sector. Each sector consists of two portions: the
address field and the data field. The address field contains information
concerning which track the head is on, which sector is about to spin past
the head, and the volume number of the diskette. The data field contains
an encrypted form of the actual 256 bytes of data which were stored on
that sector.

The "Read or Write a Track and Sector" subroutine (referred to as the BWTE
subroutine}, allows the user te write information to, or read information
from, any track and sector on the disketcte, via machine language. In
order to use the BWIS subroutine, the user must first create an 10
{Input/Output control Block) table, and an accompanying '"Device
Characteristics Table". The IOE tells the RWTS subroutine which slot and
drive number the disk drive will be in, which volume number to expect on
the diskette, which track and sector to access, and whether to read from
or write to the diskette. The Device Characteriscics Teble provides some
information to the RWTS subroutine that is necessary to operate the Apple
DISK II.

To use the RWTS subroutine, the user must set up the IOB and the Device
Characteristics Table somewhere in memory. A "controlling subroutine"
must be written and stored in memory. The subroutine must JSR to the
starting address of the RWTS subroutine {at location $30%9). When the RWTS
subrourine is jumped to, the A and ¥ registers must contain the address of
the starting location of the I0B. The A register must contain the high

H o HEHEHEEEHEENEHEDNEEGEHEHEAGAEEEEENENENEENERNE

oddress byte, and the ¥ register the low address byte. The format of the
IOBE is given in Table 3, at the end of this section. Table &4 gives the
format of the Device Characteristica Table.

Here is an example of how to use the EWTS subroutine. The sample I0B,
Device Characteristlcs Tables, and a controlling subroutine will all he
loaded into memory just after location 5COd.

The following controlling subroutine will load the A and ¥ registers with
the address of the starting location of the I0B, and then jump to the RRIS
subroutine.

SCE@- A9 @C LDA #5PC Load A register with 5PC
SC@2- AQ A 1L.0Y #3504 Load ¥ register with SfA
SCH4- 29 D9 @3 J5R 503D9 Jump to the RWTS subroutine
SCHT- &P RTS

sCcPE- o BRE

The following IOB is one that you would use to access slot 6, drive 1, to
write 256 bytes of memory starting at location 52¢@@. onto track 18,
sector 6 of the diskette:

Location Code Purpose

SCiA #1 I0B type indicator, must be 5@1

SCOB 6@ 5lot number times l&

SC@C @ Disk drive number

SCHD W Expected volume number

SCPE 12 Track number

SCRF @6 Sector number

sc1a bl Low=order byte of Device Characteristics Table
3C11 #o High=-order byte of Device Characteristics Table
sC12) Low=order byte of data buffer starting addresa
313) High-order byte of data buffer starting address
SCl4 [Unused

5C15 [l Unused

SCl6 f2 Command code, $@2 = write

SC17 a9 Error Code

5C18 P Actual volume number

scl9 af Previous slot number accessed

SC1A #1 Previous drive number accessed

The following Bevice Characteristics Table must be included, we”ll place
it at location 5C20, just after the I0OB. Locations 5C10 and 5Cl1 in the
I0B above point to the address of the Device Characteristics Table's
starting location.

Location Code Purpose

scap a0 Device type code (put a 5@9 here)

sC21 a1 Humber of phases per track (put a $@1 here)
§C22 EF Time count (put & SEF here)

5023 08 Tima count (put a 3DA here)

When you have loaded the I0B at SC@PA, the Device Characteristica Table at
$C2¢, and the controlling subroutine to load the A and ¥ registers at

scPd, then
covG

or

CALL 3@72

will cause the entire routine to execute.

TABLE 3: FORMAT OF I0B
Byted Hame Purposa

1 IBTYPE Tells the RWTS subroutine what type of IOB this
ig. Should be a 5@1. WMo other type codes are
currently defined.

2 IBSLOT Must contain the number of the slot times 16,
in which the disk drive’s controller card is
located. For example, 1f you want to access
slot #6, the value 560 must be stored in this
location.

3 IBDRVN Must contain the number of the disk drive to be
accessed -- ecither @1 or $@2.

& IBYOL The volume number of the disketce to be
accesged must be stored herc. Volume @@ will
mateh the volume number assigned to any
diskecrte.

5 IBTRE The number of the track (@ to 34) to be
accessed {s stored here. Must be within the
range 5@@ to $22.

-] IBSECT The number of the sector (@ to 12) to be
accessed is stored here. Must be within the
range 503 ro SQC.

748 1BDCTP These two bytes must contain the address of the
starting location of che Device Characteristics
Table (see below). Byte 7 must contain the
low-order byte of the address, and byte B must
contain the high-order byte.

9419 IBBUFP Bytes 9 and 1§} must contain the address of the
starting location of the "data buffer”. The
data buffer is a 256-byte long section of
memory upon which the REWTS subroutine will
operate. If you are writing onto the diskecte,
the information in the data buffer will be

11512
13

14

15

IRCMD

IBSTAT

IBSHOD

written onto the diskette. TIf you are reading
from the diskette, the information that comes
off of the disk will be stored in memory at the
location of the data buffer. 256 bytes is both
the minisum and the maximum amount of inform—
ation that can be read or written by the RWTS
subroutine.

Unused

In this byte is stored the command code that

tells the RWTS subroutine exactly what to do.

The values that can be stored in byte 13 are:

0@ —- Hull command. Does nothing but start
the disk drive and position the heasd.

5f1 == Read the entire 256 bytes stored on the
diskette at the specified track and sector,
and store them in memory at the location of
the data buffer.

582 -- Write the next 256 bytes stored in
memory at the location of the data buffer on
to the diskette at the specified track and
BaCLOY .

804 -- Format the diskette. When a diskette is
formatted, self-synchronizing nibbles are
written on every track and sector on the
diskette. Because all of the diskette is
formatted, the values in bytes 5 and 6 are
ignored. All of a formatted diskette ia
available for use; there is no DOS, or
anything stored on the diskette until the
user puts something there.

Thie location will contain the code number for

any error that may be encountered during

execution. If the RWTS subroutine returns with

the carry flag clear, nmo error has occurred.

If it returns with the carry flag set, this

byte indicates what typa of error has occurred.

1@ == Diskette is write-protected, and cannot
be written to.

$2@ -- Volume mismatch error. The volume
number of the diskette found was different
than the volume specified in byte 4.

848 -- Drive error. Something unusual is
happening.

$8# == Read error. The RWIS routine was, afrcer
48 repeated attempts, unable to read eicher
the address field or the data field. If the
data field for the specified sector has
never had anything written on it, then a
read error will result, because there is
nothing to read.

The volume number of the diskette that is
actually found will be stored in this location.

97

TABLE 3: FORMAT OF 10B [continued]

Byte# Hame Purpose

16 I0BPSH This byte must contain the slot number times 16
of the slot that was accessed most recently.
For example, if you previously accessed a disk
drive in slot 5, store the value 35§ here. If
there is no controller in the specified slot,
the disk will hang.

17 IOBPDN Thie byte must contain the number of the disk

drive that was sccessed most recently -- & 51
or 5p2.

Table 4: FORMAT OF DEVICE CHARACTERISTICS TABLE

Bycef# Hame Purpose
1 DEVIPC Device type code, telling what type of device
this is. A 5P@ should be stored in this byte
for use with a DISK II.

2 PFTC Humber of phases per track. A 381 should be
stored here.

154 MOMTC Hotor on time count complemented, in 109
micro-second intervals. A 5EF should be in
byte 3, and a 5D8 in byte &, for use with a
DISK II.

28

CHAPTER 10

INPUT, OUTPUT AND
CHAINING

1#d Selecting I/0 Devices: IN#, PR# and Other Stuff
16 Integer BASIC CHAIN
1@6 Applesaft Chain

e

SELECTING 1/0O DEVICES: IN#, PR# AND OTHER STUFF

There are various ways in which information can be used as input or output

for yvour Apple computer. Very often the keyboard serves as a source of

input. Usually the Apple uses a TV screen for output, but any sccessory

or peripheral connected to a controller in one of the seven Apple
accessory slots can be used for input or output using the IN# and PRY
commands «

Examples:

IN# 6 obeains subsequent input from the device controlled from
slot #6. MNote: if slot #6 contains a disk controller
card, this command will cause D05 to be booted. If nmo
device is in slot f6, the system may "hang". Fress the
RESET key to recover.

INf @ obtains subsequent input from the keyboard (not slot #8),
instead of a peripheral device.

PR# | transfers output to the device controlled from slot #1,
usually the printer. HNote: if no device controller
card is installed in slor #1, the system may "hang"
and you®ll have to press the RESET key to recover.

PE# # returns output to the TV screen (not to slot ##).

The syntax for the commands is

INF &
or
PR# =
where & apecifics the slot to use. What happens depends on s:
value of 8 result
less than @ SYNTAX ERROR
@ re-establishes usual device (for IN#, dnput from

the keyboard, for FR#, output to the TV screen)

1 through 7 transfers to device controlled from the specified
slot (boots DOS if a disk eontroller card ie in
that slot)

& through 16 SYNTAX ERROR in deferred-exccution mode;

the system hangs in immediace-execution mode
17 through 65535 RANGE ERROR

greater cthan 65535 SYNTAX ERROR

The command INf @ re—establishes input from the keyboard; FRA @
re~establishes output to the TV screen.

With DOS in effect, the INF and PRF commands may be wsed in immediate

execution mode in the usual way (see your BABIC manuals). But when they

100

are igaued by lines in a progrom, IN@ and PRF suat take the form of DOS
commands such as

18 D§ = "": REM CTRL=D
2¢ PRINT DS; "PR# 1"
I} PRINT D&; “INP 2"

When DOS 16 not in effect, the IN# and PR# commands set the contents of
the Apple Monitor Input and Output reglsters to select the desired input
and output devices.

When DOS is in effect, the contents of the Apple Moniter Inmput and
Output registers are set to select DOS, while the contents of the DOS
Input and Output registers are set to select the desired input and oucpur
devices. The following paragraphs describe what happens each time a
character leaves or enters the Apple.

When the Apple sends an output character, the Apple Monltor Output
regliscter directs thact character to DOS. If the character is to be sent on
(because it is not part of a DOS command), DOS does a fast two-stage
switch:

1. First, DOS replaces the contents of the Apple Monitor
Input and Output registers with the contents of the DOS
Input and Ouctput registers. Then it sends the character
out to the device now selected by the contents of the
Apple Monitor Inmput and Dutput registers.

2. HNext, D05 re-connects itself by again placing the
pointers to DDS in the Apple Input and Output reglsters.

Similarly, each time the Apple asks for an input character, the Apple
Monitor Imput register directs that request to the DOS. Once again, DOS
does its fast two-stage swictch:

l- First, DOS replaces the contents of the Apple Monitor
Input and Qutput registers with the contents of the DODS
Input and Output registers. Then it obtains an inmput
character from the device now selected by the Apple
Moniter Input and Output registers.

2. Hext, DOS re-connects itself by again placing the
pointers to DOS in the Apple Input and Output registers.

When DOS is in effect, DOS intercepts all input characters from the input
device before they reach Applesofr or Integer BASIC or the Monitor. That
is why IN# and PR#, when typed on the keyboard as immediate-execution
commands, can be trapped and used by DOS to change the DOS Input and
(utput registers.

Similarly, DOS intercepts all output characters from the Apple before they
reach the output device (but after they have affected the Apple Monicor
Input and Qucput registers). That is why IN# and PR#, if issued from
within a program but not in PRINTed DOS commands, can disconnect DOS by
changing the Apple Moniter Input aend Output registers before the cosmands
ever get to DO5. Because the entire contents of the Apple Monitor Input

101

and Output registers are replaced each time D05 attempts to send or
receive a character, D03 will usvally re-connect itself if it was not
disconnected at both Input and Output registers simultaneously.

w

If you execute a PR# command from within a program, wicth a program line
such as

3@ PRE 1
then DOS will be partially disconnected and unable to intercept subsequent
output. D05 iz still connected for input, and the next attempt to obtain
any input character will cause BOS to re-=connect itself for both input and
outpul .

The same situation occurs with the use of INF inside programs when DOS is
in effect. A program line such as

6@ IN# 1

will discomnect DO8 for subsequent input. DOS is etill connected for
output, and the next attempt to send out a character (even a return or a
prompt character) will cause DOS to re-comnect itself for both ifnput and
output. To avold such conflicts and allow DOS to manage the Input and
Queput regiscers, issue PR¥ and IN# commands in immediate-execution mode,
or as D05 commands in program lines such as those mentioned earlier:

1§ D§ = ""; REM CTRL-D

2¢ PRINT DS; "PRF 1"

3 PRINT D%; "IN 2"

The CTRL-D character tells DOS that the follewing output characters are a
S command.

102

g U o EEsEDOaENEEEESEEOEEEEE

TABLE 1: APFLE MONITOR INPUT AND OUTPFUT REGISTERES

Monitor Input Hegister: Locations 56=57 ($38-539)

When Reglster

contents To the Then subsequent input
are set by value comes from
REBET =74l Monitor Input Routine
¢ CTRL-K [Wote 1] (SFD1B) from Apple keyboard
NP [Hoce 2]
s CTRL-K [Mote 1] 49152 + s*256 Slot #s
INds [Hote 2] (5C=0@) 1f slot #s contains disk
[where s>§] controller, then boot DOS
POS boot =8626 + Top of mem. D05

{=52182 + 5Top of mem.)

Monitor Qutput Register: Locatioms 54=53 (536-537)

When Register

contents To the Then subsequent output
are set hz !ﬂll.'lE‘ goes to
RESET =528 Monitor Output Routine
CTRL=-P [Hote 1) (SFDF@) to TV acreen
PRIG [Hote 2]
8 CTRL-P [Hote 1] 49152 + s*256 Eloc #s
PRfs [Mote 2] (SCs@@) 1f slot fs contains disk
[where s>@] controller, then boot DDS
DOS boot =8577 + Top of mem. pOs

(=52181 + 5Top of mem.)

Hote 1+ The commands s CTRL-K and s CTRL-P are Monitor commands. To
type CTRL-K (which does not appear on the TV screem), type K while
holding down the CTHL key.

Note 2. When DOS 1s in effect, this command will affect the contents of
the Apple Monicor register only if the command is issued as an instruction
in a stored program and not in a PRINT CTRL-D instruction.

Hote 3. In addition to the commands mentioned in Table I, directly
POKEing appropriate values into the Apple Monitor register locations can
also be used to select input and output devices; or to re-connect a
disconnected DOS.

103

TABLE Z: DOS TNPUT AND OUTPUT REGISTERS

D0S Input Register

When Register
contents
ara set by

D08 boot

RESET 3D#G

IH#@ [Note 4]

PRINT D5;"IN#@"
[Hote 5]

To the
value

=741
(SFDIE)

Then subsequent input
comes from

Monitor Input Routine
from Apple keyboard

INfs [Note 4]
PRINT D5:"IN#s"

[Mote 5]
[where s>f]

DOS Qutpuc Register

When Register
contentcs

are Bat EI

DOS boot

RESET DG

PRFE [Note &)

PRINT D5;"FRiQ"
[Note 5]

49152 + s%256
(SCs@d)

To the
value

=528
{SFDFR)

S5lot #s
If slot f#s conteins &
disk controller, then
reboot DOS

Then subsequent output
Eoes to

Monitor Output Routine
to the TV screen

PRis [Hote 4]
PRINT D5;"FPR#s"

[Note 5]
[where s2@]

49152 + g*256
(SCaiil)

Elot #s
1f sloc #s contains a
disk controller, then
reboot DOS

104

Wote 4. When DOS is in effect, this command will pot affect the

contents of the DOS Input and Output registers if the command is issued as
an instruction in a stored program and not in a PRINT CTIRL-D inscruction.
If a program line such as

120 PR3

is executed, the contence of the Apple Monmitor Output register will be
changed, leaving DOS partially disconnected until the next input.

Mote 5. In this command, it is assumed that the string-variable named D%
has been assigned the character control=D, or CTRL-D. This character,
which does not appear on the sereen, is produced by typing D while
holding down the CTRL key.

Hote 6. No maccter what input or output device is selected by the DOS
Imput and Output registers, input can alse be received from the disk and
output can be sent to the disk.

Hote 7. In addition to the commands in Table II, directly POKEing the
appropriate values into the DOS Imput and Output register locatioms can
alsc be used to select input and ocutput devices. However, the specific
memory locations of the D05 Input and Qutput registers change with
different system memory sizes and with different versions of DO5. For
this reason, a special procedure exists for changing the contents of the
D05 Input and Oucput regiscer locations. It is a two step procedure:

a) Change the Apple Monitor Input and Output register
locations to the values you wish the DOS Input and
Output registers to contain. (This may be done by
directly POKEing the Apple Monitor register locations
or by executing IN{ and PR non-DOS instructions in a
stored program.)

b) CALL 1¢¢2 {from the Monitor, you would type $3EAC).

After this CALL, DOS will be re-connected via the Apple
Monitor registers, and the previous contents of the Apple
Monitor Input and Qutpur reglisters will appear in the DDE
Input and Output register locacions. This CALL can also
be used to re=copnect DOS any time your program needs

to disconnect DOS for awhile. See the program on page
151 for an example using this technique.

Note 8. The Monitor commands & CTRL-K or s CTRL-F , when typed on the

keyboard, are not recognized by DOS: they affect the Apple Monitor Input
or Qucput registers directly.

105

INTEGER BASIC CHAIN

Certain applications are most easily implemented by uwsing a series of two
or more programe which are LOADed and RUN sequentially. TIn such
circumstances, the second program often needs te use the values of
variables and arrays developed by the first program. The usual RUN
command erases the first program™s variables and arrays when it loads

the second program. In Integer BASIC (but not Applesoft) the DOS

command CHATH allows you to load and run a second program without

erasing the first program’s variables and arrays.

Suppose you've been using an Inceger BASIC program called PART ONE. The
command

CHAIN PART TWO

will load and run the Integer BASIC program called PART TWO without
clearing the values of any variables wsed in the program PART ONE. The
CHAIN command may be issued in immediate-execution mode as shown sbove, or
from within the last lines of the PART ONE program as a DDS command:

20614 D$="": REM CTRL-D
2p@29 PRINT D$; "CHAIN PART TWO"

The syntax for the command is familiar:
CHAIN £ [,58] [,Dd] [,Vv]

APPLESOFT CHAIN

The CHAIN command works only with Integer BASIC, but if you do not meed

to pass variables, it is easy to link Applescft programs to load and run
in sequence. In the firsc program, just include a last line such as

20P¢ PRINT CHR$(4); “RUN PART TwO"

When this line is executed, it will start up the second prngran (where the
second program is named PART TWO). In the process, the first program and
all its variables are erased.

A different procedure must be used in order teo load and run a series of
Applesoft programs without erasing earlier values of wvariables and
arrays. To chain in Applesoft, you will need to use the machine-language
program called CHAIN that is on the D05 versiom 3.2 System Master
diskette.

To chain from a program called PART ONE to a program called PART TWO, you
must have the CHAIN program on the same diskette with the program PART TWO
(see next page for instructioms). Then, simply insert these two lines as
the last two lines to be executed in the PART ONE program:

2¢@2@ PRINT CHR$(4); "BLOAD CHAIN, A52@"

20019 CALL S52@"PART TWO"

The two lines may use any line numbers, but they should come one after the
other in the program, as indicated. The first line loads the Applesoft
chaining ability into the computer. The second line actually does the
chaining (but see next page, for warning).

106

N EEgHEHEEDEOEEEEENENENENRGERE

<

There must be no space in the third line between the CALL address 5200 and
the following gquotation mark. The CALL address must not be given in
hexadecimal.

If you have Applesoft on the firmware ROM card, you can copy the CHAIN
program onto another diskecte as follows. First place the CHAIN program
into Apple’s memory, with the command

BLOAD CHAIN, A2856

Then save it on the desired diskecte, with the command

BSAVE CHATIN, AZ@56, L&56

If you are using RAM Applesofc (on diskette), you can copy the CHAIN
program onto anather diskette as follows. First place the CHAIN program
into Apple’s memory, with the command

BLOAD CHAIN, Al2296

Then save it on the desired diskecce, with the command

BSAVE CHAIN, Al2296, L456

<

Hote that neither Address parameter for copying CHAIN is the same as the
Address parameter for actually using CHAIN.

107

RO yyVw—w/rrrer4vs aaaa——//""/™"/"/""/™/""™""™"™>"""

108

APPENDIX A

FILE TYPES USED
WITH DOS COMMANDS

118 By DOS Command
111 By File Type

0%

Unless otherwise indicated, D05 commands may be used either in
immediate-execution mode or in deferred-execution mode {within a program).

However, some text file commands (e.g. READ and WRITE) must be used in
deferred-execution mode.

Most DOS coemands refer to 8 named file. A file may be a cext (data)
file, or & program in Integer BASIC, APPLESOFT or Machime Language. The
tables below indicate which file types may be used by each command. The
first table liats the commands alphabetically; the second table groups
them by associated file cype. The commands CATALOG, FP, INT, MAXFILES,

MON, NOMON, PR# and IN# are not included because they do not explicicly
refer to named files.

FILE TYPE USE, LISTED BY DOS COMMAND

pos Integer Applesofr Sequential Random Machine
Command BASIC BASIC Access Access Language
Uses Program Program Text Text Binary
Files: File File File File File
APFEND X
BLOAD x
RREIN x
BSAVE %
CHAIN X
CLOSE ® X
DELETE X x x X X
EXEC x
INIT 4 X
LOAD x x
LOCE X X x X X
OPEN X x
POSITION X
READ X x
RENAME X % x X X
RUN X ®
SAVE % X
UNLOCK S x x ® x
VERIFY x x x % X
WRITE x *

Note: use these commands only in deferred execution mode:
APPEND, OPEN, POSITION, READ, WRITE

10

FILE TYPE USE, LISTED BY FILE TYPE

Integer BASIC files only
CHAIN

Integer BASIC or APPLESOFT files
INIT

LOAD

SAVE

RUN

Sequential Text files only
APPERD

EXEC

POSITION

Either Sequentisml Text Files or Random=Access Text Files
OPER
CLOSE
READ
WRITE

Machine Language files only
BLOAD
HELMN
BSAVE

All Types of Files
DELETE

LOCK

INLOCE

RENAME

VERIFY

Hote: these commands must be used in deferred-execution mode:
APPEND, OPEN, POSITION, READ, WRITE

m

112

114 ONERR GOTO Codes
115 Discussion

APPENDIX B
DOS MESSAGES

13

When DOS detects an error connected with disk usage, it normally displays
a message describing the error and stops any program that is running.
These messages are in addition to the usual messages generated by

Applesoft or Integer BASIC. DOS messages can be distinguished from those
of Applesoft or Integer BASIC as follows:

An Applesoft message, such as
TSYNTAX ERROR

iz preceded by a question mark.

An Integer BASIC message, such as
®kk SYNTAX ERR
is preceded by three asterisks.

A DOS messege, such as
SYNTAX ERROR

iz preceded by no character at all.

A D05 message appears exactly the same, whether you are in Applesofr,
Integer BASIC or the Monitor at the time the message is generated.

<>

If a DDS message occurs whoen you are uaing the Monitor, the system is
reset to the type of BASIC from which you entered the Monitor.

By using Applesoft’s ONERR GOTO command (see the Applesoft manual), you
can create Applesoft error-handling routines that deal with DDS messages
which would normally interrupt your program. When a D05 error occurs
following an ONERR GOTO command in an Applesoft program, a code number for
the type of error is stored in decimal memory locatiom 222. This is the
same memory location in which Appleseft stores the code for an Applesoft
error message. The command

¥ = PEEK(222)

sers the value of ¥ to the Applesoft ONERR GOTD code corresponding to the
error that caused an Applesofc ONERR GOTO jump to occur.

DOS messages and thelr corresponding Applescft ONERR GOTO codes are shown
below, with the most common cause of each message. Each of the messapges
is then discussed in greater detail, with a more comprehensive 1ist of
causes and cures.

ONERR GOTO CODES

code DOS message Most common cause

1 LANGUAGE HOT AVAILABLE Applesoft not on diskette

2,3 RANGE ERROR Command parameter too large
4 WRITE PROTECTED Write-protect tab on diskette
5 END OF DATA READing beyond end of text file
& FILE NOT FOUND File misspelled, or not on diskette
7 VOLUME MISMATCH Wrong Volume parameter

114

ONERR COTO

code D05 message Most common cause

B 1/0 ERROR Door open, or diskette not INITed

9 DISE FULL Too many files on disketce

1@ FILE LOCKED Attempt to over-write a LOCEed file
11 SYNTAX ERROR Bad file name, parameter, or comma
12 NO BUFFERS AVAILABLE Too many text files OPEN

13 FILE TYPE MISHATCH Diskette file doesn’t match command
14 FROGRAM TOD LARGE Insufficient Apple memory available
15 NOT DIRECT COMMAND Command must be in a program

DISCUSSION

LANGUAGE NOT AVAILABLE (ONERR GOTO code = 1)

Oecurs 1f DOS cannot find a programming language, either Integer BASIC or
Applesoft, that is required to exceute a DOS command. The commands FF,
INT, LOAD and RUN may all iniciace a language search. If Integer BASIC s
requested, D05 looks for that language in ROM. TIf Applescit 1s requested,
% first looks for the language in ROM, using Applesoft from an Applesoft
firmware ROM card (if sveilable) regardless of the card’s switeh

position. If Applesoft is not found in ROM, DOS looks on the diskette in
the "defaule" disk drive —— the drive indicated by the default or most
recent values of the 8§ and D parameters. DBOS will not look on any other
disk drive.

This message usually arises after a DOS request for diskette Applesoft, if
the diskecte in the default drive does not contain the program APPLESOFT.
Replace the diskette with one that contains the program APPLESOFT; or use
the D parameter with any DO5 command, to select the another drive. A
command such as this will do nicely:

FF, D2

If you think DOS should have found Integer BASIC in ROM, but it didn’t,
try the following:
l. Turn off your Apple and remove the cover.
2. Locate the row of four large ROM chips (black, rectangular
objects) in the middle of the main printed-circuit board. These
chips are labeled "ROM F&", "ROM F@", "ROM EB" and "ROM E@".
3. Press down firmly on these chips.
4. Replace the cover, turn on the Apple and try INT again.

If you think DOS should have found Applesoft on your Firmware ROM card,
but it didn“c, try cthe following:
1. Turn off your Apple and remove the cover.
2+ Unplug the Applescft firmware ROM card. Locate the row of
five large ROM chips (black, rectangular chjects) across the
card. These chips are labeled 1, 2, 3, &4; and 5 above
the chips, and D@, D8, E@, EB and F@ below the chips.
3. Fress these chips Firmly inte their sockets.
4. Plug the Applesoft card back into alot #@, the leftmost slot.
5. Replace the cover, turn on the Apple and try FP again.

115

RANGE ERROR (ONERR GOTO code = 2 or 3)

Occurs when the value of a D05 command parameter or a DOS command quantity
is too large or too small. Refer to the manual to see which D0OS commands
are used with which parameters.

Range
Parameter Letter Minimum Maximum
All Filas: 5lot S 1 7
Drive D 1 2
Volume v [254
Sequential Byte B @ 32767
Text Files: Relative Field R @ aziet
Absolute Pield (EXEC) R) 32767
Random=Access Record Length L 1 32767
Text Files: Record Number R 1) 12767
Binary Files: Starting Address A 4] 65535
Humber of Bytes L 1 32Ta7
Range
DS Command Quantity Minimum Max{mum
PRE & &8 @ 16 &&
INF & &] 16 n&
MAXFILES n n 1 16

* Minimum volume number THIT will actwally assign to a diskette is 1.

**% Moximum slot number built into the Apple IT is 7. In deferred=-
execution mode only, the SYNTAX ERROR message is given for s values
from B through l6.

Hote: The use of values outside the above ranges does not always cause the
RANGE ERROR message. Any DOS command parameter or command quantity that
ig -legs than § or greater than 63535 will cause the SYNTAX ERROR message,
not the RAKGE ERROR message.

WRITE PROTECTED (ONERR COTO code = &)

Occurs when DOS attempts to store information on a diskecte, but the disk
drive does not detect a "write-protect" notch or cutout on the left side

of the diskette”s outer case. The following are the most likely causes:

1. There is an adhesive label placed over the diskette’s write-protect
cutout, to prevent accidentally over-writing or deleting any information
on the diskette. This label may be removed, whereupon DDOS will SAVE or
BESAVE or WRITE to the diskette.

2. There is no write=protect cutout onm the diskette. This is true on the
System Master diskette, for maximum protection. While not recommended, it

116

is possible to carefully cut o notch of exactly the correct size and in
exactly the correct place. Use another diskette s write-protect notch for
a model.

3. If you receive this message while RUNning the COPY program, and the
cause i not either | or 2; above, you moy have inserted the diskette into
the drive incorrectly (in any other situation, DOS gives the 1/0 ERROR
massage to signal incorrect diskette insertion). Check the diskette’s
position im the drive, and re-read Chapter 1l discussion on inserting
diskettes.

END OF DATA (ONERR GOTD code = 5)

Occurs when you try to retrieve information from a portion of a text file
vhere no information has ever been stored. Any byte beyvond cthe lasc field
in &8 sequential text file, or beyond the last field of each record in a
random-access text file, may contain the value @. Zero is the ASCII code
for & null character, a "nothing", and any command that causes the
retrieval of this character results in the END OF DATA message. Remember
that only OPEN automatically secs the position-in-the-file pointer back to
the file"s beginning. The message usvally occurs after an INPUT or a GET
command, and can arise in several different ways:

l. Too many successive INPUTs or INPUT with too many variables. Each
INPUT or INPUT variable cawses one additional, adjscent field to be read
into the Apple.

2, Too many successive GETs. Each GET reads one additional, adjacent byte
or character into the Apple.

3. The B (for Byte) parameter was too large. In sequential Files, this
parameter must not specify & byte beyond the last RETURN character in the
file. In random—access files, the B parameter should not specify a byte
beyond the last RETURN character in the currently selected record.
Remember, the first byte in a file or a record is byre @.

4. The R (for Relative-field position) parameter in a POSITION command was
too large. In sequential files, this parameter must not specify a field
beyond the last exiscing field in the file. In random—access files,
POSITION s R parameter should not specify a ficld beyond the last existing
field in the currently selected record.

Remember, the R paramecer used with POSITION is not the same as the R
parameter used with READ. 1t specifies a field position in the file,
relative to the current file position and forward in the fila, only.
R specifies no change in the current file position. Rl jumps the file
position ahead to the first byte following the field that contains the
current position.

POSITION scans forward through the concents of the file, byte by byte,
looking for che Rp-th RETURN character. TIf it encounters o @ byte (the
null characcer) before finding the requirved RETURM character, the END OF
DATA message 1s given immediately: it is not necessary actually to INPUT
or GET the null characcer.

17

5. The R (for absolute-field position) parameter in an EXEC command was
too large. This parameter may specify the first field beyond the last
existing field in a file, but attempting to specify the second field
beyond the file's end will cause the END OF DATA message. Remember, R
specifies the first field in a file.

6. The R (for Record) parameter im a READ command specified &
random-access file record in which nothing has yet been stored. Before
you can READ from a particular record in a random=access file, you must
first WRITE some information into that record.

Hemember, BEAD's R parameter is not the same as the R paramcter used by
POSITION or EXEC. READ's R parameter specifies an absclute record in a
file: R® is the file's first record, and so on.

DOS uses the OPEN command’s I parameter for calculating where the Rr-th
record begins, so the OFEN preceding READ must use the same L parameter
value as the OPEN that preceded WRITE for that file.

FILE HOT FOUND (OMERR GOTO code = 6)

Occurs when certain D05 commands specify a file name that is not in the
CATALOG for the diskette in the aelected or default disk drive. Only the
commands SAVE, BSAVE, INIT and OPEN can create a file whose name did not
previously exist. In addition to these, CLOSE may be used with any wvalid

name. A [ile name specified by any other DOS command must already exist
on the diskette.

This message may arise in various ways:

1. You may have misspelled the file®s name, by a typing error or by

omitting the comma that separates the file name from a following
parameter. Check the CATALOG for the exact spelling of the file’s name.
Warning: if vou have accidentally typed control characters inte the name
of a file, CATALOG will not display these characters. For help, see
"File Rames" in Appendix F.

2: The file is on another diskette. Check the CATALDG.

3. The file has been accidentally DELETEd. Check the CATALOG.

4. When you use the INIT command or the UPDATE program on a diskette, you
specify a file name which D05 cthereafter atcempts to RUN each time you
boot the system with that diskette in disk dreive 1. Unless you write a
BASIC program, and seve it using the name given to INIT or UPDATE, the
FILE NOT FOUND message will be given each time the system is booted with
that diskette in drive 1. If you can”t remember the name of this
"greeting program", just UPDATE the diskette again.

VOLUME MISHATCH (OWERR GOTO code = 7)

Occurs when the Volume (V) parameter used in a DOS command is not the same
as the volume number assigned to the diskette in the default or selected

118

H 0 HEBEEHEOEEEDEEEEAEENEEEEENENNERENED

disk drive, when that diskette was INITialized. The volume number of a
diskette is shown at the head of each CATALOG display. Unless a DOS
command specifies a particular volume, the diskette’s yvolume number is
ignored, and no message 18 given. If a DOS command specifies volume @,
the digkette’s volume nusher is still ignored. If no velume number is
given wicth INIT, or if volume number @ is given, the diskette will be
inicialized with the default volume number 254.

1/0 ERROR (OMERR GOTO code = 8)

Oceurs after an unsuccessful accempt to store data on a disketce or to
retrieve data from a diskette (DOS tries 95 times, then gives up). This
message can occur in the following ways:

1. The selected or default drive’s door is open. Close the door to the
disk drive.

2. Mo diskette in the selected or default disk drive. Put a diskecte into
the drive end close the drive door.

3. Diskette in the selected or default disk drive has not been

INITialized. INIT the diskette (and UPDATE it to a master diskette, 1f
you wish).

4. Diskette is inserted incorrectly. Check the diskette, and re-read the
section in Chapter | on Inserting diskettes.

3. During execution of a VERIFY command, DOS found the specified file was
not stored correctly on the diskecte. If the file's information is still
in memory, try storing it again (perhaps on a different diskette).

fi. The IS command”s D (Drive) parameter has specified a disk drive that
does not exist in this system. The default drive is now the non-exiscent
drive. .Just specify the correct D parameter with the next DOS command to
resat the default.

7« The DOS command’s 5 (Slot) parameter has specified a slot cthat does not
contain a disk controller card in this system.

<

You are in trouble. The default slot is now the empty slot your last DODS
command gpecified. The next DOS command without a slot parameter will go
to the empty slot and return the same message as before. Worse yet, DOS
thinks the disk drive which does not exist in that slot is srill

running. The next DOS commend specifying the correct slot will send

the system Into permasnent limbo, waiting for the non-existent drive to
&top running before it turns on the newly-selected drive. You must either
re<boot the system (losing any program in memory, of course) or else:

a) Type CATALOG, S3 {where g = correct slot)
b) Press che RESET key (when the aystem hangs)
¢} Type ID@G (system is now okay again)

19

DISK FULL (ONERR GOTO code = 9)

Occurs when DOS attempts to store information on a diskette, and finds
that no mora storage space is available on that diskette. A maximum of
403 gectors can been filled with user-sctored information, as displayed in
the CATALOG (if an individual file exceeds 235 sectors, the CATALOG
display of ite length starts over again ac B0¢}. If you receive the DISK
FULL message, rest assurad that all files are CLOSEd, and that DOS sdaved
for you all it could (leaving you with some portion of your file not om
the diskette)s If vou receive this message while saving a file called
STUFF, the first thing you should do is to

DELETE STUFF

and then save your program on another diskette that has more room left.

<>

1f you receive the DISE FULL message and then immediately try to SAVE,
BESAVE or WRITE any file on the diskette before DELETEing any files, then
(are you ready?) the sector lemgth of the eighth entry shown in the
CATALOG will be set to @. Don’t despair: despite the odd appearance of
the eighth entry”s CATALOG diasplay, the file itself is in fine shape.
Other odd events may occur as well. To avold such situwations, 1if you get
a DISK FULL message, DELETE some files before trying to save other files.

FILE LOCKED (ONERR GOTO code = 1G)

Occurs when you try to SAVE, BSAVE, WRITE or DELETE using a file name that
has been LOCKed on the diskette that is in the selected or default drive.
Check the CATALOG display: the names of LOCKed files are preceded by an
agterisk (*) in the CATALOGC display. A file is LOCKed to prevent
accidental over-writing. Use another diskette or UNLOCE the desired file.

SYNTAX ERROR (ONERR GOTO code = 11}

Occurs when D05 encounters a syntax error in a DOS command. Check the
manual for the exact syntax required for the command in question. The
problem may be a non-valid file name (see Appendix F), an incorrect
parameter symbol, & missing parameter, a missing or incorrect Separator
{usually a comma). This message will also arise if a paramster value or
command quantity is a negative number or is greater than 65535, or, in the
case of the IN# and PRF commands used in deferred-execution mode if the
specified slot is from B through l6.

Raraly, avery DO5S command causes the Applesoft or Integer BASIC Syntax
Error message. This usually means that DOS has not been booted or has

become “disconnected" from input and output. Try pressing the RESET key,
then typing DG to reconnect DOS; or, re-boot the disk.

120

KO BUFFERS AVAILABLE (ONERR GOTO code = 12}

Occurs when a DOS command requires another file buffer for imput or
output, and all the available file buffers are already in use. On booting
the system, DO5 reserves enough space in the Apple’s memory for three
input=-and=-output file buffars. A subsequent MAXFILES command can increase
or decrease the number of availlable file buffers, and a CLOSE command cam
release file buffers currently in use for text files.

Hany DOS commands use one file buffer for input or output during thedir

execution, and then relinguish that buffer when execution of the command
has ceased.

When a text file is OPEMed, a file buffer is sssigned to that file for
input and output. This buffer remains in use, generally, until ics file
is CLOSEd eicher specifically by file name or by the nameless CLOSE that
de-allocaces all the cext-file buffers. A text file {s not automatically
CLOSEd by a program”s coming to an end. To conserve buffer space, CLOBE
files as soon as you are through using them. Remember that the next OPEN
will re-set the position-in-the-file pointer to the file®s beginning.

<

The MAXFILES command can be used to increase buffer space before writing
the program or loading the program into memory. Increasing MAXFILES moves
HIMEM down, and this can erase stored Integer BASIC program lines or

Applesoft atrings. Changing MAXFILER (n the middle of a program can be
especially dangerous.

FILE TYPE MISMATCH (ONERR GOTO code = 13)

Occurs when a DO5S command atcempts to use a file name that is already
assigned to a file whose file type is inappropriate to the presant
command. I1f you are sure the command is correct, use & file name that is

not now on the diskette, use a different diskette, RENAME the existing
file or DELETE the existing file.

This méssage arises from several different incorrect combinatlons of DOS
commands with existing file types. Here are the correct combinations:

LOAD £, RUN E, SAVE [f must be an Applesoft or Integer

BASIC program file.
CHATN f f sust be an Integer BASIC program file.
OFPEN f, READ f, WRITE £, f must be a text file.

AFPPEND E, POSITION E, EXEC f
BLOAD £, BRUM £, BSAVE f f must be a binary program or data file.

The greeting program™s file name, specified with INIT or UPDATE,
must refer to an Applesoft or Integer BASIC program file.

121

PROGRAM TOO LARGE (ONERR GOTO code = l4&)

Occurs when a DOS command attempts to place a diskette file into Apple’s

memory, and finds the available memory insufficient to contain the eatire
file. You (or a previous program) may have set HIMEM too low for the
current task, or a large MAXFILES may have set HIMEM too low. If you set
the npusber of file buffers to three, using the command

MAXFTLES 3

then HIMEM will be returned to the booted value given in Appendix D, Table
2.

O

If you are in Integer BASIC, and HIMEM is set low (Lo protect the
high-resolution screen mesory, for imstance), you may experlence trouble
on shifcing to diskette Applesoft. Diskette Applesoft occupies about
12,5 of memory, but a shifct to diskette Applesoft (with FP or LOAD or
RUM) does not reset HIMEM to maximum. When DOS tries to load the
Applesoft program from diskerte, the message FROGHAM TOO LARGE will be
glven if HIMEM is below abour 131@#. The system will be lefr in Integer
BASIC again, and you must set HIMEM higher from Integer BASIC. See

Appendix D, Table 2 for your system’s maximum HIMEM with DOS and three
file buffers.

In deciding whether or not a program will fit inte the available memory,
D05 looks only at the number of diskette sectors occupied by the

program. In general, the program does not complecely fill the last sector
(256 bytes), but DOS ignores this fact. DOS compares only the high-order
byte of LOMEM (Integer BASIC) or HIMEM (Applescft) with the high-order
byta of the projected end-of-program location. Thus a program which
should fit into memory, but which would leave less than 236 bytes of free
memory after loading, may couse the PROGRAM TOO LARGE messape. Sometimes
this can be corrected by moving HIMEM or LOMEM slighcly, to change the
high=order byte, before loading the program.

NOT DIRECT COMMAND (ONERR GOTO code = 13)

Occurs when you try to use one of the text File commands APPEND, OPEN,
POSITION, READ or WRITE from immediate-execution mode. These DOS commands
can be used only from wichin FRINT statements in program lipes.

122

124
124
126
126
127
128
129
132
133
135
136
136
137

APPENDIX c

FORMAT OF DISKETTE
INFORMATION

Overview of the Storage Process

WRITEing into a Segquential Text File
WRITE-ing into a Random—Access Text File
How DOS WRITEs into Text Files: General Procedure
Contents of File Sectors

The Track/Sector List

The Diskette Directory

Volume Table of Contents

Track Bit Map

Track and Sector Allocation Order
Betrieving Information from the Disk
READing from a Sequential File

READing from a Random—-Access File

123

This appendix tells how information is stored on a diskerte, and how DOS
remembers where particular information has been stored.

In the following discussion, a dollar sign { §) or the label "Hex"
preceding a number indicates that the number {8 expressed in hexadecimal.

OVERVIEW OF THE STORAGE PROCESS

In the Disk 11 system, information is recorded on a diskette in 35
concentric zones or bands, called tracks. These tracks are numbered

from track $@¢, the outermost, through track %22, the innermost. The disk
drive’s recording and reading head can be moved in and out, to stop and
hover over each of these 35 different zones of the spinning diskette.

Furthermore, the length of each track on the diskette is divided into 13
segments, called secrors. These sectors are numbered from 4@ through

§C, and up to 256 (5LEd) bytes of information can be stored in each
gactor. Once the disk drive’s recording and reading head is positioned
over a given track, that track”s 13 sectors will pass under the head, one
after the other, each time the diskerte spins around. DOS always records
information on the diskette in 256=byte chunks, cxactly filling one sector
sach time.

To store information on the diskecce, DOS first puts 256 bytes (one
sector’s worth) of the information in an area of Apple’s memory called a
file buffer. When this file buffer is full, the information is stored
in one sector on the diskette. Then DOS fills Apple®s file buffer with
tha next 256 bytes of information and stores that information on the
diskette.

In general, DOS will begin storing a program or text file wherever it can
find an unused sector onm the diskette. When that sector is filled with
ite 256 bytes of information, DDE finds another free sector, perhaps on
another track, and continues to record information there. This process
continues until the entire file has been stored.

To remember which sectors of which tracks contain the information for a
particular file, DO5 makes up a list of each track and sector used, as it
gtores the file. Then DOS stores that list, ecalled a track/sector listc,
in yet another Eree sector (or sectors) on the diskette.

Finally, the files’s name, Eile=type, length in sectors, and the diskette
location of the file’s track/sector list are recorded in a special area of
track £11 called the directory- At this time, too, the diskerte’s

track bit map is updated to correctly show which sectors of each track
are currently in use.

WRITING INTO A SEQUENTIAL TEXT FILE

Entries in a text file consist of 1 to 32767 characcers scored as their
equivalent ASCIT codes and ended by a RETURN character (either ASCIT 5S@D
or ASCII §8D). Each such entry is called s field.

124

In a sequential text file (no Length parameter specified when the file was
OPEMed), fields are stored immedietely following each other (see Chapter
6). DOS writes the first byte of each new field immediately following the
RETURN character that ended the previcous field (unless otherwise
instructed by a Byte parameter). Each time the file ia OPENed, DOS
forgets the current position within the file, snd starts WRITEing again im
byte @ (again, unlese otherwise inscructed by a Byte parameter).

In order to re-write a particular field or character within a sequential
file, WRITE can be used with the B (for Byte) parameter to begin writing
at the specified, absolute byte of the file (the first byte in the file

is byte #, the next is byte 1, ete.). The byte specified may be before or
after the current position in the file.

<

It is very difficulc to remember exactly which character appears in every
byte of a text file, especially in a sequential cext file. For cthis

reascon, use of the Byte parameter in sequential text files is not
recommended .

The POSITION command cen be used with an B (for Relative-field)
paramatar to move A pointer ahead (only) through the file a specified
number of fields relative to the current position in the file. A
program portion such as

128 PRINT D¥%: "DPEN MRAMES"™

3 PRINT DfF: "POSITION NANES. Ri
1981 PRINT D¥: "WRITE NAMESY
168 PRINT "AFPLE COMPUTER"

178 PRINT 4 "CLOSE NAMES™

will attempt to WRITE the characters APPLE COMPUTER into the HAMES file,

beginning in the first byte of the fourteemth field (the first field is
Relative-field #).

POSITION can move you to the first byte of any given field Relative to the
current position in a sequential text file. If you then re-WRITE that
field, however, wou must make sure that you re-PRINT exactly the same
number of characters that vou PRINTed in that field originally. IE wou
PRINT fewer characters, you will have created two new fields: the field
you just PRINTed, and the tail-end of the original field you were

over-writing. If you PRINT more characters than the original field

contained, vou will have over-written some of the characters at the start
of the nexc field.

125

WRITING INTO A RANDOM-ACCESS TEXT FILE

For a random-access text file, a Length parameter is specified when the

file is OPENed. The Length parameter determines the number of bytes in &
record, which iz a field or a colleccion of fields that DOS treats aE a
unit. Each record inm a random-access text file is like a separate
aequential text [ile whose maximum total length has been specified by the
Length parameter. As long as you stay within that maximum Length, you can
WRITE and re-WRITE all you want, without affecting any other record in the
file. WRITE can be used with the B (for Record) and B (for Byte)
parametears to bagin writing into any byte of a specified record.

)

Since any DOS command will terminate WRITE-ing, you cannot use POSITION
te jump shead into different fields within the record specified by the
WRITE command.

DS uses the Length parameter to calculate where to write the first byte
of each mew record (L bytes beyond the first byte of the previous
record). D05 simply skips over any hytes between the previous record”s
last character and byte L. The bytes skipped over will continue to
contain whatever values were stored there at some earlier time (see the
next section for details).

<

If you attempt to WHITE more characters in a random-access record than
you specified in the Length parameter, all the characters are stored
correctly on the diskette. However, when you begin WRITEing to the next
record, DOS calculaces the new record’s starcing position ss 1f the
previous record had been within the apecified Length. The new record thus
overwrites the last characters of the previous, over-sized record,
ineluding the end-marking RETURN character of the previous record’s last
field. The result is messy.

HOW DOS WRITES INTO TEXT FILES: GENERAL PROCEDURE

When you WRITE a field inte a rexc file, DOS first checks on the diskette
to see whether or not you have already stored information in the sector
which should contain that field. 1If your file has never used that sector
before, DOS places zeros in all 256 bytes of an Apple file buffer, and
then lets you put your information inte that buffer for later storage in
the correct diskette sector. The contents of the file buffer are stored
on the diskette when your information has completely filled 256 bytes of
the buffer, or when the file is CLOSEd.

Thus, when you WRITE to a particular sector the firsc cime, unused
bytes are glven the value zero. An attempt to READ a byte containing a
zero (the ASCIT code for the null character) will result in the message
END OF DATA

126

H g EaENESEBAESOAESEESOEEESOESEDNEAEEEDRE

But if D05 finds your file has already stored information in the sector
vhich should contain the field that wyou are now WRITEing, it reads all 256
byces from that sector into the Apple’s file buffer. After you have
changed any of those file=buffer bytes to contain your new information --
the WRITE, POSITION (sequentisl files only) and PRINT commends teke care
of this for you -- DOS then stores the buffer’s contents right back inta
the the same diskette sector where they originated. The contents of the
file buffer are stored back on the diskette when you accempt to change any

byte not in the sector that was read into the file buffer, or when the
file is CLOSEd.

<

Thus, 1f you WRITE more information for a file, and DOS stores that
information in a diskette sactor already being used by your file, this
will not re-write any zeros in unused bytes. Any of those sector bytes
which you did not re-write will continue to contain whatever information
might have been stored there before your WRITE command. This is true of
the unused bytes at the end of a sequential text file, and also true of
the unused bytes in each fixed-length record of a random-access text file.

CONTENTS OF FILE SECTORS

Row that you know the general process of recording a file on diskette, we
can discuss each element in more decail. The accual informacion stored,
sector by sector, is different for each type of file.

FORMAT OF FILE SECTORS
for different file types

File Byte
Lype Sector (Hex) Contents of bhyte
BASIC lst sector [Program length, low byte
{both 1 L ", high byce
types)
2 through FF Tokenized program
Subsequent All Tokenized program
Bectorsa bhytes
Text All All ASCIL representation of
sectors bytes text: one byte/character

(509 marks end of file)

127

File Byte
type Sector (Hex) Contents of byee
Binary lst sector ¢ Starting RAH address, low byte
1 ", high byte
2 Length of RAM image, low byte

3 n 1 n LL) L1] ¥ hii'h hyte

4 through FF Binary data

Subsequent All Binary data

SEctors bytes

THE TRACK/SECTOR LIST

As a file is stored on the diskerte, D05 makes a list of the diskette

locations used by the fila.

This track/sector list is then stored on the

diskette in the same way the file itself was stored. The contents of a
track/sector list are as follows:

First Sector of &
TRACK/SECTOR LIST

Contents of byte

Link: track number where continuation of the

track/sector lisc may be found.

Link: sector number where continuation of che

Byte

{Hax)
] Hot used
1
2

3 through B Not used

C Track number of
hi] Sector Li; i
E Track number nl
F Sector "
it Track number of
11 Sector " "
FE Track number of
FF Sector "

track/sector list may be found.
{If both byces of Link = @, no link.)

fira: Elll lc:tur

Btcnnd file sector

LL W

third file sector

122nd file sector

LL] AL L}

128

If any track/sector pair is @/@ thias indicates an unassigned sector
{usually che end of the file, although text files may contain @/9

indicators for many as-yet-unassigned sectors where future bytes or
records may be written).

Subsequent sectors of the track/sector list (if the list extends beyond
122 track/sector pairs) are identical to the first sector described above,
except that the track/sector palrs refer to subsequent groups of 122 file
fectors. Also, Link bytes 1 and 2 will be different for ecach subseguent
sector. Each Link pair gives DOS the diskette location of the next
portion of the track/sector list. If both bytes of the Link are @, this
indicates the final portion of the track/sector list.

With a cexc file, only the track/sector pairs for those sectors actually
containing information appear as non-zeroc in the track/sector lisc. DOS
calculates cthe correct position for the trackfsector pair within the

lisc, filling unassigned track/sector pairs with zereos. If 8 complete
fector at the beginning of the track/sector list would contain nothing buc
#eros, that sector 1s not stored on the diskecce.

Thus, 1f the Length parameter for a random-access file is 128 (two records
per sector) and you WRITE only to record number 2780, only two diskette
gectors are actually uvsed: one for cthe contents of record number 2700, and
one for the "twelfth" (and only) sector of the track/eector list. The
contents of records number @ through 2683 may someday occupy 1342 sectorsg
but wntil these records are written, they do not use any diskette space.
The track/sector list giving the locations of the sectors containing
records number @ to 2683 would have occupled eleven additional sectors,
and the list position of the track/sector pair for record number 279@@ ia
calculated as {f the entire twelve sectors of list were present.

However, since nothing has actually been wrictem te any of che sectors
that may someday contain the first 2684 records, DOS does not keep the
track/sector list for chose unused sectors.

THE DISKETTE DIRECTORY

On every INITialized diskette, track 311 is reserved for information
concerning the contents of the diskette. This is where D05 stores the
directory containing, for each file, the file's name, its file type, the
number of sectors occupied by the file (MOD 256), and the diskette
location of the file®s track/sector list. The CATALOG command causes most
of this information to be displayed on the screen. Each sector of a
diskette directory is formatted as follows:

One sector of a DISKETTE DIRECTORY

Byte (Hex Contents of byte
[Kot used
L Link: Treck number where continuation of che
directory may be found (normally S11)
2 Link: Sector number where coatinuation of the

directory may be found
(If both bytes of Link = @, no link.)

12¢

Byte (Hex) Contents of byte

3 through A Nat used

B through D Directory entry for file 1 (see balow)
2E through 5@ Directory entry for [ile 2
51 through 73 Directory entry for file 3
74 through 96 Directory encry for file &
97 through RS Directory entry for file 5
BA through DC Directory entry for file 6

b through FF Directory entry for file 7

The file numbers shown for the seven directory entries are

arbitrary. When a file is DELETEd, DOS marks the directory entry for
that file (see following table). Tne next time & file is stored, DOS
replaces the old marked directory entry with the directory entry for the
new file. Thus, while DOS originally fills the directory in the order
shown, file DELETEions scon render this order meaningless.

The diskette directory begins in track $11, sector 3C. If more space is
needed to store additlonal dircectory entries, sector $C (s Linked to
sector 5B. If still] more space is needed, sector 8B is Linked to sector
$A, and so on, through sector 51. This allows the directory to store
directory entries for a maximum of B4 different Files.

Each directory entry is written in che following formar:

DIRECTORY ENTRY FOX ONE FILE

Relative
Byte (Hex) Contents of Byte
@ Track number of the file"s track/seccor list
(Changed to SFF when the file is DELETEd.)
1 Sector number of the file’s track/sector list
2 File type (see discussion on the next page)

3 through 2@ File name

21 Sector count: the number of diskette sectors
(40D 256) occuplied by the file

22 End mark: normally zero
{but changed to the track location of
the track/sector list, from relative
byte @, when the file is DELETEd)

130

S HgEESENEOEENEEEDD DGR ED

A directory entry’s relative byte specifies each byce within the encry,
glthough each entry starts at a different actual bycte number within che
directory sector. To find the absolute sector byte corresponding to a
relative byte, add the relacive byte to the entry’s first absolute sector
byte (as listed in the previous table).

Because only one byte is used co store a file's sector count, the maximum
directory sector count is 255 (5FF). If a file exceeds 235 sectors, its
gsector count (as displayed by CATALOG) starcs over again ac W0@. This
does not affect use of the file, but may give an erroncous impression of
how full the diskecte is.

The eight bits of a file's type-designating byte, relative byte number 2
in o file’s directory entry (see previous table), are assigned values as
follows:

BYTE INDICATING THE FILE TYPE

CATALOG
Bit svmbol File type designated
7 . File is locked (write protected) 1f this bit = 1
File is unlocked (not protected) {f this bic = @

] Expansion type for future use (normally zero)
5 2] L " " " " "
ﬁ i L " Ll LL) " "
3 LU L1 L H AL i L
r B Binary file if this bic = 1
1 A Applesoft BASIC file Iif thias bit = 1
] 1 Integer BASIC file if this bit = 1

T Text file if bits @ through 6 are all zero

The file type is determined by a l-bit appearing in one of the bits @
through 6. If bits @ through b are all @-bits, the file type defaults to
a Text file.

The file’s type=designating byte cam thus take on the following values:

YALUES FOR BYTE INDICATING FILE TYPE

File Value of Type byte (Hex)
typa File unlocked File locked
Text @]
Integer 1 Bl
Applesofc 2 82
Binary & 84

131

VOLUME TABLE OF CONTENTS

Sector $P of crack %11 contains the diskette’s Volume Table of Contents,
or VIOC. The VIOC stores the following informacion:

Hyte
(Hex)

Pl —

&
5
]
7 through 26

27
28 through 2F

w
il
32
33

14
35
36
37

38 through 38
3C through 3F
4@ through 43

44 and 43
&6 pnd &7

VOLUME TABLE OF CONTENTS (VIOC)
Track %11, Sector 5@

Value

AHex)
2

1
ic

2

=

1 through FE
?

Ta

FF
FE
@
L

23
[1]3]

L= -R-1

[Continued on next page |

Description

Not used

Track number of firsr directory sector
5‘= :ur i [} " n LL]

[0S release number

HNoc unﬁd

Diskette volume numbar (default: SFE)
Hot used

Maximum number of track/sactor pairs possible
in each sector of a track/sector list

Hot used

These four bytes are a mask for the
track bit maps (see next 2 pages):
each l-bit enables one of the 13
aectors to be used in every crack.

Humbar of tracks per diskette

Kumber of sectors per track

Humber of bytes per sector, low hyte
" LL) LL] " L] hlﬁ,h h}'tE

Track @ bit map (These tracks
Track 1 bic map not available
Track 2 bit map to the user)

Track 3 bit map

L1 AL LL) i

132

FE O oEHEBEDENENENEOEENESEEEEEEG

Byre Value
{Hax) {Hex) Description
L8 and 49 1 Track & bit map
4A and &B ﬂ i L
78 and 79 1 Track 510 bit map
TA and 7B @ " i
7C through 7F @ Track %11 bic map (Mrectory & YTOC)
B and 81 ? Track 512 bic map
82 and 83] M LI A
@ and Cl 1 Track 522 bit map
€2 and C3 @ s Y
C4 through FF @ Hot used
TRACK BIT MAP

Starcing in byte %38 of the VTOC (see previous table),

subsaquent four-byte groups each contain the track bit map

for one of the diskette’s 35 tracks. The arrangement of l-bics

and @-bics wichin a track’s bit map shows D08 which sectors of

that diskette track are currently in use, and which sectors are free.
bit map for each track uses the [ollowing format:

The

TRACK BIT MAP
For one diskette track

Dasignated Designated
Sector Sector
Byte Bit (Hax) Byte Bic (Hex)

lst 7 (A 2nd 7 &

& B & 3

5 A 5 2

b 9 4 1

3 B 3 ']

2 7 2 through # Spare

1 B 0 memeassmesmewe ==

] 5 ird & 4th All Spare

133

I1f a bit in the crack bit map containg the value 1, the sector

corresponding to that bit is free. If a bit in the map contains the value
¢, the sector corresponding to that bit is currently in use. Bits marked
"Spare" in the table above contain the value §; these bits are not used.
The track bit map for a typical trock might appear as follows:

TYPICAL TRACKE BIT HAF

lat byte 2nd byte ird byte ith byte

|uwuuun||11nu wwww_yuwuwn_'
tttttttt thit e seae Spare spare
CRASETES H321@g~

- "

- Hot used
Sectors designated

| = Free sector (assuming the corresponding bit of the mask,
VIOC bytes 53@ through 533, is alse 1)
@ = Bector in use

When a file 18 being stored on the diskette (using WRITE, SAVE or BSAVE),
an entire track is allecated to the file at once (when possible), and the
track’s bit map shows the entire track in use. Then, when the file is
CLOSEd, those sectors not actually used are again designated as free, in
the bit map for that track.

Sectors actually used to store a file’s information, however, cam only

be "set free” when that file name is DELETEd. Suppose your diskette
contains & 1@¥-sector BASIC file named BIG, for inatance. If you now
SAVE, on the same diskette, a 2-sector file with the same name BIG
{overwriting the old file) a CATALDCG of the diskette will reveal that your
?=-gector file BIG is still using wp 1@ sectors. To frea up unneccessary
gectore used by a BASIC file named BICG, wse the following sequence of
commands :

LOAD BIG

DELETE BIG

BAVE BIG

A similar process can be used to release unneccessary sectors usoed by
binary files.

To release unneccessary sectors being used by a text file, you will have
to READ each of the file’s fields into the Apple. If you store all the
fields in an array, you can then DELETE the original file before WRITEing
each record back onto the diskette using the original file name. Another
way to do this is to read each field into the Apple and immediately WRITE
the field back onto the diskette using a file name that is different
from the original file name. When you have read and re—written the last
field, you can DELETE the original file.

134

TRACK AND SECTOR ALLOCATION ORDER

Each diskette contains 35 tracks, thres of which are reserved for DO5S and
one for the Directory,; leaving 31 tracks for the user. Each track
contains 13 sectors, so all ctogether 31*13 or 403 sectors are available to
the user.

Sectore are filled starting with sector 5C and working back to sector 5{.
Tracke are firet filled starting with track 512 (just inside the

directory /VIOC track) and proceeding inward te track $22 (the innermost
track). When track 322 has been filled, tracks are then filled starting
with track $1¢ (just outside the directory/VIOC tratk) and working outward
to track 53 (the ocutermost ctrack available to the user).

—_—_—— e e e e e e e e e

Tracks 59 - 52
(Do&E) I

Tracks 53

—————— [e e e e o o e e

_-_Diﬁknt_ts\.-
L_ piskette Cover
TRACK ALLOCATION DRDER SECTOR ALLOCATION ORDER
First Last First Last
Filled Filled Filled Filled
Firsc: $12 —> 522 50 ===> 50
Then: 510 ——=> 503

135

RETRIEVING INFORMATION FROM THE DISK

To retrieve a file from diskette, D05 follows the process used to store
the file, but in reverse. After a command such as

LOAD FILE
or
BLOAD FILE

for instance, DOS goes to the diskecte’s file directory im track 511, and
finds the directory entry containing the name FILE. This entry also
containg the diskette location (by track and sector) of the desired file's
track/sector list. DOS then goes to this crack/sector lisc, and reads the
firat track/sector pair- This pair specifies the diskette location of the
first sector containing the program named FILE:. When DOS has read that
first sector of program into the Apple, it returns to the track/sector
list for the locacion of the program’s second sector, and so on.

READING FROM A SEQUENTIAL FILE

When READing from a sequential text {ile, with a program portion such as
50 PRINT D5; "READ TEXTFILE"

60 INPUT AS

for instance, the general process is like that described for LOADing a
program file. However, only the sector containing the text file's nexc
field {all characters from the current position in the file through the
next RETURN character) is read into the Apple’s file buffer in response to
the INFUT command. Then the actual sector bytes that make up the desired
field are assigned to the variable AS. This process is repeated if the
field extends over more than one diskette sector. Each subsequent INPUT
command will cause reading of the file to resume, from the Apple’s file
buffer if it already contains the proper ficld, or by reading another
diskette sector into the Apple. This continues until the last field is
read or some command CLOSEs the file.

By using the READ command with the B (for Byte) parameter, you can cause
the next INPUT to begin reading from the specified absolute byte in the
file (the file’s first byte is @, the next is |, etc.). This byte may be
before or afcer the current position wicthin the file:. To use this
parameter affeccively, however, you must know the contents of every byte
in your file. The POSITION command uses the B (for Relative-field)
parameter to move DOS°s current=-position pointer the specified number of
fields forward (omly) through the file, relative to the current position
in the file. Each time you OPEN a file, DOS forgets its current posicion
in the file and starts READIng again from the beginning of the file
(unless otherwise instructed by a Byte parameter).

<>

The INFUT command treats & response somewhat differently in Integer BASIC
end in Applesoft. If certein characters such as the colon or comma appear
in the response field, further characters in the field may be ignored or
assigned to multiple INPUT variables (if any). For details, see the
appropriate manual for Integer BASIC or for Applesoft.

136

Ui EEDERGDS

READING FROM A RANDOM-ACCESS FILE

The text-reading process 1s somevhat different when READing from a
specified record of a random-access text file (also see WRITING TO A
RANDOM=-ACCESE FILE in this appendix). In a random=access text file, each
record is composed of the same number of bytes, specified in the Length
parameter when the file was OPENed prior to WRITEing the file. When this
pame file is OFENed prior to READIng it, an identical Length parameter is
given. To find the beginning of a particular record (specified by the
READ command”s R parameter), DOS wses the Length parameter to calculate
the number of bytes occupied by all the preceding records. That number is
then divided by 256 (5100) to determine how many file sectors DOS must
gkip over to reach the sector containing the desired record. Then DOS
examines the file"s track/sector list and finds the diskecte locacion of
the desired file sector. Finally, DOS reads the correct sector into the
Apple’s file buffer. Then the correct byres can be read from the file
buffer.

A

2

This same retrieval process would be followed even if the text file had
originally been stored as a sequential file, or as a random-access file
using @ completely different Length. DOS blindly calculates the sector
and byte position of the requested record according to whatever Length
parameter yvou specify when you OPEMN cthe file prior to READIng from it,
regardless of the Length parameter (Lf any) that was used when WRITEing
the file in the first place.

By using the READ command with both R (for Record) and B (for Byte)
parameters, you can cause the next INPUT to begin reading from the
spacified absolute byte in the specified record (each record’s firstc

byte is @, the next is 1, ete.). This byte may be bhefore or after the
current position within the record. To use this parameter effectively,
however, you must know the contents of every byte in the specified record.

The POSITION command, while primarily intended for access to gsequential
filea, can be used with the R (for Relative-field) parameter to move
DOS"s current—position pointer the specified number of ficlds forward
{only) through the current record, relative to the current position in the
record. READ is used wich the R (for Record, this time) parameter to
move the current-position pointer to the beginning of the desired record.
Using POSITION cancels READ mode (without resetting the position-pointer),
and another READ (chis cime, with po paramecer) re-instates READ mode.

Each time you OPEN a file, DOS forgets its current position in the file
and starts READing again from the beginning of the file (unless otherwvise
instructed by a Byte andfor Record parameter).

<>

b

08 keeps no information for you concerning the structure, Eormat,
record=length, or fiald-length of your texr files. To use your
random=access text files effectively, you must keep detailed written
information about the structure of these files, or keep the information at
the beginning of the [ile..

137

B

138

APPENDIX D
MEMORY USAGE

14¢ Memory Areas Over-Writtem When Booting DOS
141 Memory Areas Used by DOS and Either BASIC
142 HIMEM Set By Booting DOS

139

TABLE 1: APPLE Il MEMORY MAPS
A. MEMORY AREAS OVER-WRITTEN WHEN BOOTING DOS

Location on
any systém:

Highest RAM
memory address

D05 moves

HIMEM here
[Bote 2]

16383 (53FFF)

TA2& (51D0E)

6912 (S1BP1)

2539 ($9FF)

P48 (5800)

1923 (53FF)

TEE (5303

Lowest HAM
Memory address

wag (seed)

i

T
8969 Relocated DOS,
{52388 on completion

8 of boot

7 bytes not used

n

1792

(5700)
byLes

Three file
buffers of

595 (5253) bytes
for imput & output

Dos

s Where first booted

from a Master diskette

[Hote 1]

D0S Relocaction Code

[Bote 1]

"Ribble" buffers
ugsed during boot

First stage boot
starts here

Location on a
4BK system:

49151 (SEFFF)

49192 (590@8)

4184 (S9CF8)

IBARR (S960@)

Hote 1. This memory area {8 not affected when booting a Slave diskette:
DOS is placed direccly below the Highest RAM Memory address that was

available on the system that INITialized the Slave diskette, whether
appropriate to the present system or not.

140

B. MEMORY AREAS USED BY DOS AND EITHER BASIC

Highest RAM
mémory address:
49151 (SBREFF) —
on a 48K system

]
1752

Without DOS,
either BASIC

sets HIMEM here

start at HIMEM
and bu*ld down

L 2. S

start at HIMEM
and bu.!l.ld dowmn

i, s T

Disk
(SZARH) Operating
bytes System
{1f booted)
T T '
Integel' BASIC Applesoft
program lines strings

Ay 245T7h
(Eappl)
High=-rescolution graphics, Page 2
[Bote 5]
16384
(54@aa)
High-resolution graphics, Page 1
[Hote &] R
g192 :
(52d08) i t
} Dllké[tl
_______ ™ Applesoft
Either BASIC s | {if used)
variables occuplies
start at LOMEM | this space
and build up | [Mote &]
______ e I
Applesoft “‘F :
ot program lines | t
seleetf-push LOMEM up) I
s | i
(5de0p)
BASIC System use:
low=resolution graphics
Lowest RAM and text screem,-etc.
memory address:
e (sodel)
RHote 2.

[Hote 2]

Booting DOS
gets HIMEM here
[Hote 2]

FP (diskette)

sets LOMEM at

12291 (538@3)
[Hote 2]

o)

FP (firmware)

and INT set
LOHEM here
[Hote 2]

If vour system is in Integer BASIC, the HIMEM pointer can be
found (low byte first, then high byte) in locations 75-77 (54C-54D).

1f

your system is in APPLESOFT BASIC, the HIMEM pointer is in locations

141

115-116 (§73-§74), same format. See Table 2 for the value of HIMEM set by

booting D0S. Increasing MAXFILES will move HIMEM down an additional 595
bytes for each file buffer added. For the locations of other Applesoft

program pointers, consult your Applesoft IT BASIC Programming Manual,
Appendix I.

TABLE 2: HIMEM VALUE SET BY BOOTING DOS

When D05 i8 booted, HIMEM is set according to the amount of memory in the
system:

System Highest RAM address HIMEM: set by DOE boot
gize Decimal Hexadecimal Decimal Hexadecimal
16k 16383 S3FFF 5632 S160d
20K 20479 S4FFF 9728 S26@R
24, 24575 $5FFF 13824 S3609
12K 32767 STFFF 21816 45600
I6K J6863 SBFFF 26112 S6600
4EBK 49151 SBFFF -27136 59609 [NHote 3]

Note 3. The number -27136 could also be written 38489, but Integer BASIC
will not sccept numbers greater than 32767. In Integer BASIC, memory
addresses greater than 32767 must be expressed as their negative
equivalents. The negative equivalent of any positive decimsl address n is
{ n = 65536).

Hote 4. Using high-resolution graphics Page | erases the contents of
memory locations 8192 through 16383. Unless DOS sets HIMEM to a value
greater than 16383, an attempt to use high-resolution graphics Page 1 will
crase part of DOS. This means that you cannot use Disk I and
high-resolution graphics at the same time, unless your system contains at
least 32K of memory.

If you are using diskecte Applesoft, an attempt to use high-resolutiom
graphics Page | will erase part of Applesoft. With diskette Applesoft,
you may use high-resolution graphics Page 2, only, if your system contains
at least 36K of memory. Sea Note 5.

Note 5. Using high-resolution graphics Page 2 erases the contents of
memory locations 16384 chrough 24575. Unless DOS cecs HIMEM to & value
greater than 24575, an attempt to use high=resolution graphics Page 2 may
erase part of DOS. This means that you cannot wse Disk IT and Page 2
high=resclution graphics at the same time, unless your system contains at
least 36K of memory.

142

H AN EEEHEEHEEHEEHEEREEEEE A E AP

APPENDIX E

DOS ENTRY POINTS
AND SCHEMATICS

144 DOS Entry Points
145 Circuit Schematic: Disk IT Interface
146 Circuit Schematic: Disk II Analog Board

143

DOS ENTRY POINTS

Routine to re=connect DOS (if page 3 is over-writtenm):

System Decimal address
slze { CALL)

48K =25153

32K 23999

16K 1615

Hexadecimal address
16G)

The Monitor command 3DUL displays this number at the top right.

Locations containing the start address and length of a BLOADed program:

System Start address (low byte)
s8ize Decimal Hexadecimal
4BE 43634 SAAT2
32K 27250 S6AT2
16K 1F866 52AT2

To asee the starting address or length after a BLOAD, type
PRINT PEEK(low byte) + PEEK(low byte +1)%256

Program to find the DOS locations containing the starting address
and length of the most recently BELOADed program, on any size system:

REM EBLUARD FlHNCEFR
7 H =- 28408 FEM OIS —EHT
= s FE {IGHE
¥ CHRESF EM CTRI
2 NT D3: "BSA a0
3 FRINT D% Bl 0 E
PRINT D3 E Fi
FLiF H + 17e a7
i EE i {19 |
| 1 | THEN
FRINT CHoAT OF START
ADDRESS 1 3
2 OR H + T T
' ;- PEE 119 O
13 E P
1

The values of H and T (lines 7 and 8) are shown for a 68K system.

Decimal

63616
27232
1QB48

Program length (low byte)
Hexadecimal

SAAGQ
S6A60
SZAG0

Appendix D, page 142, shows the correct values for your system.

This program takes about 2 minutes to find the desired locations.

D05 character input and ocutput routines:

See Chapter 1@, expecially Note 7 on page 1§5.

144

For an example
using the technique described, see the program on page 151.

CIRCUIT SCHEMATIC : DISK Il INTERFACE

00-3000-050 Sumgndusc mddelll saices inace

B0 Fiw FLAT Cam
MALT ConmlLTo

145

CIRCUIT SCHEMATIC : DISK Il ANALOG BOARD
ma@ B00ees

ofi e

146

HH EHEEHEEEEHEEHEHEHEOEEBEENENEEEEESEEOEEHEESAENERDNE

148
151
151
156
158
161
163

APPENDIX F

SUMMARY OF DOS
COMMANDS

Notation

File Names

Housekeeping Commands

Access Commands

Sequential Text File Commands
Random-Access Text File Commands
Machine Language File Commands

147

The DS commands are grouped into 5 categories in this sppendix:

Housekeeping commands

INIT HRENAME VERIFY
CATALOG DELETE MOM
EAVE LOCK ROMON
LOAD UNLOCK MAXFILES
RUN

Access Commands
FP PRA CHAIN
INT i

Sequential Text Fila Commands
OPEN APPEND
CLOSE POSITION
READ EXEC
WRITE

HEandom-Access Text File Commands
OPEN READ
CLOSE WRITE

HMachine Language File Commands
BSAVE
BLOAD
BRUN

Procedures used in DOS (including chaining in Applesoft) are summarized in
Appendix G. The notation used in the summaries (and throughout the
manual) is described {n the following section.

NOTATION

Syntax refers to the structure of a computer command. A simple notation
is used to describe the syntax of each D05 command.

Items in square brackets, [and] , are optionnl. These items are
sometimes called parameters. Not all commands permit all parameters, but
those parsmeters that are permitted in a given command may appear in any
order, unless otherwise noted.

If a command uses a file name, the file name must come immediately after
the command word itsclf: the first item following the command will be
treated as a file pame. The file name must be separated by a comma from
any parameter that follows.

Curly brackets may be used to indicate when a certain key should be
prassed:

{CTRL} hold down the key marked "CTRL" while another key is typed.
{CTRL}D means hold down the CTRL key while you type the
letter D. Sometimes another notation is used: CTRL-D means
the same as {CIRL}D.

148

{RETURN} press the key marked "RETURN". The (RETURN} required
after every command is not shown.

{RESET} press the key marked "RESET".

{ESC) press the key marked “ESC".

CAPITAL letters and commas must be typed as shown, lower case letters
stand for items that you must supply.

f file name. This is from one to 3P characters. Any typeable
character except the comma may appear in a file name. The
firsr characrer must be a lecrcer of the slphabet. For more
details, see the next section.

Examples: CHEBE
RECIPE
SOM OF SQUARES
NEWSS
HOW-ABOUT-THIS

B another file name.
Example: SEPARATOR WITH LOW VELOCITY

-1 slot number. s specifies the Apple II slot in which the
disk controller card has been placed (usually slot 6)-
6 initially defaulta to the slot from which DOS was booted.
It subsequently defaults to the last value specified for this
parameter. 5 must be in the range | through 7.
Examples: 7

o

If & refers to a slot which does not contain a disk controller
card, the system may stop and a program in memory may even
be lost. See I/0 ERROR, in Appendix B, for more details.

v volume number of a diskette. v initially defaults to the

volume number of the diskette from which the system was booted.

It subsequently defaults to the latest value specified for

this parameter, or implicicly specified by a CATALOG command.

v must he in the range § through 254.

Example: 1@l

Mote: A diskette’s volume number may not he @. 1In a DOS
command, specifying a volume number of @ or simply V
with no number is a "wild card” and tells che DOS to
determine and use the volume nusbher on the diskecte.

d drive number (either 1 or 2). d initially defaults to one.
It subsequently defaults to the latest velue specified for
this parameter.

Example: 2

149

] position number. Used with the R parameter in the POSITION
and EXEC commands for sequential text files. p spacifies
a field whose position in the File 15 p fields ahead of the
current file position. p defaults to @, which does not move
the file-position pointer in the file. WNote: EXEC always sets
the pointer to the start of the named file, so p is always

relative to @ when used with EXEC. See command summaries lacer
in this Appendix. p must be in the range § throwgh 32767.

r record number. Used with the R parameter in che READ and
WRITE commands for random=access text files. r defaults
to § after OPEN. Thereafter, it defaults to che last record
gpecified. r points to an absolute record within a random-
access file. r must be in the range # through 32767.

a address in RAM. The @& parsmeter is required with the BSAVE
command. a specifies the starting Apple memory address for
BSAVEing or BLOADing binary information. If RLOAD doss not
specify an a parameter, then the value of a defaults to
that used when the binary file was BSAVEd. a must be in
the range @ through 65535.

b byte number. b defaults to @. In a sequential file, b
pointa to an absoluté byte within the file. In a random=-access
file, b points to an absolute byte within the record pointed
to by T . b muat be in the range @ to 32767. For most
applications b 1is in the range P through the last byte in
the current sequential file or the last byte in the current
rﬂ.l’ldﬂﬂ-ﬂf_"{! BEBS Feco l."d -

h | length specifier. {1 defaults to 1. When used in the OPEN
commend with random-access files, j 1s required and specifies
the number of byres that will constitute a record in a random-
access file. When used with the BSAVE command, j {s required
and specifies the number of byces of Apple memory, starting at
address a , whose contents are to be stored on diskette. b |
must be in the range § through 32767

As an example of this notation, the DOS command that is notated

IRIT £ [,Y] [.58] [,Dd]

can be interpreted as

INIT HELLD, V17, D2

by the following process. The kayword "INIT" is in upper case, and sust
be typed exactly as shown. In the syntax description, "f" is lower case
and stands for a file name == it is replaced by the legitimace file name
"HELLO" in this example. The ", V17" is optional. "V" stands for
"volume"; 17 was chosen arbitrarily as a volume number for this example.
The notation ",58" iz optional and omitted. The notaction ",Dd" becomes ,
B2 in this example, indicating that disk drive number 2 is to be used.

Any numerical constant in a DOS command can be entered in hexadecimal
notation by preceeding the hexadecimal digits with a dollar sign.

150

File names may be up to 3@ characters long, and sust begin with a letter.
The name cannot contain a comma, a CTRL-M or a RETURN, which is used to
terminate the command. Spaces that precede the first non-space character
in a name are ignored. All name characters beyond the ageh are ignored.

&
When typing Eile mames, the use of special keys such as ESC, the

lefr-arrow and right-arrow keys, and certain keys typed with the CTRL key
("control" characters CTEL=C, CTRL-H) may have unexpected effacts.

<

If a file name contains conctrol characters, you won't see them printed,
but they must be typed to use or delete the file.

The following Applesoft program can be used to find any hidden characters
except CTRL-M (RETURN), ESC, CTRL-H (left arrow) and CTRL-U (right arrow).

WHTH 281 144 ., 248, =1

CATH 2496,

If you suspect you may have accidentally introduced a control character
into & file neme, type this program, SAVE it, and RUN ft. The Applesoft
prompt (]) will be displayed. Naxt type

CATALOG

and you”ll get a list of all the files, with any control characters shown
as flashing characters. Control characters in program listinga can also

be found this way. To re-instate normal printouts, type
PRI @

INIT £ [,¥v] [,88] [.Dd]
Fxample: THIT HELLO, V18

The parameter v assigns a volume number to the diskecte being inicialized.
Details on imitializing diskettes are in Chapter 2 and Appendix G.

151

CATALOG [,5s] [,Dd]

Example: CATALOG

Dieplays on the screen the volume number and a list of all files on tha
diskette in the specified or default drive. The default volume number 1is
changed to match that of the indicated diskette. If this command uses a
volume parameter [,¥v] that parameter is ignored.

With each file is displayed an indicator of its file type and the number
of diskette sectors occupied by the file. The file types are:

Integer BASIC program file, created by SAVE.
Applesofc BASIC program file, created by SAVE.
Text file, created by OPEN and filled by WRITE.
Binary memory-image file, created by BSAVE.

o

An asterisk beside a file’s type indicator shows that the file is LOCKed.

A maximum of 403 diskecrte sectors ara available to the uwser. Each
disketre sector can store up to 256 bytes of information. The minisum
length of a file is | sector, for an empty text file. (Technically, that
| sector 1s occupled by the empty track/sector list for the file.) Empty
Integer BASIC, Applesoft, and Machine Language files take 2 sectors. (1
for the crack/sector list and | for the first program sector, which
contains the program’s length. See Appendix C for more details.)

If an individual file excecds 255 sectors, the CATALOG display of that

file’s length starts over at Wi, This does not affect use of the file,
but may give an erroneous impression of how full the diskette is.

SAVE £ [,5s] [,Dd] [,Vwv]
Example: SAVE COLOR DEMOS, V56

If there 18 no file with the specified file name on the diskette in the
apecified or default drive, a file is created on that diskecce and the
current Integer BASIC or Applesoft program is stored under the given file
nome. If the diskette containg a file with the specified file name, but
of a different language or file type, then the message

FILE TYPE MISMATCH

will be displaved.

<>

If the chosen diskette already contains a file with the specified file
name, and in the same language, the original file's contents are lost and
the current BASIC program is saved in its place. No warning is given.

152

LOAD £ [,5a) [,Dd] [,Vv]
Example: LOAD DOW JOMES, V19, D1

Actempta to find Integer BASIC or Applescft program file with name £ on
the diskecte in the specified or default drive. If the volume numbers
match and there is such & file, that program will be LOADed into the
computer. It can then be LISTed, or RUN, or BAVEd as with any program.
LOAD closes any open text files, changes the Apple to the correct language
for file f , and erases any program in memory before placing the new
program in the Apple.

1f file f 4is an Applesoft BASIC program, and Applesoft is not alrveady in
memory or available from the Applesoft firmware ROM card, the program
Applesoft will be LOADed and RUN from the specified drive avtomatically,

before file f 4is LOADed. If Applesoft is not on that diskette nor on
the firmware ROM card, the message

LANGUAGE ROT AVAILABLE
will be displaved.

The instruction LOAD, without any parameters, will LOAD a program from
casgecce tape.

RUN £ [,5s] [,Dd] [,Wv]
Example: RUN ANNUITY, D2

LOADs file f from the specified or default drive (see the previous

discussion), then also RUNs the program loaded. If jusc
RUN

ia typed, the program in memory is RUN.

RENAME £, g [,58] [,Dd] [,Vv]
Example: RENAME SEPERATE, SEPARATE, 54, D1, V@

Finds the file named f on the diskectte in the specified or default
drive, and changes its name to g . The fila"s contents are not affected.
If file f was open, it is closed.

<

RENAME does not check to see whether the file name g is already in use, so
it is possible to use RENAME to put several files of the same pame onto a
diskette -- a potentinlly confusing situation, at best.

Do not REMAME the greeting program that was created when the disk was
INITialized unless you’'ve first changed the name using the UPDATE 3.2
program. Otherwise, DOS will continue to look for the old greeting
program name, each time you boot the system with this diskette in drive 1.

163

DELETE £ [,8s] [,Dd]) [,¥v]
Example: DELETE TEST

Removes the file named f from the diskette in the specified or default

drive. If f wns open, this commend closes it. See Appendix C for more
details of the deletion process.

<

If & file named f does not exist on the diskette, the message

FILE WOT FOUND

will result. To avoid this occurrence stopping your programs, first OPEN
the file, then DELETE it.

LOCK £ [,Ss] [,Dd] [,Wv]
Example: LOCE LOVE LETTERS, V3l

This command allows you to make file f , on the diskette in the specified
or defaulc drive, safe from accidental deletion or change. A LOCKed file
is indicaced in the CATALOG by an asterisk (*).

UNLOCKE £ [,8s8] [,Dd] [,V¥v]
Example: UNLOCK RECIPES, V3il, D2

1f wou change your mind, and want to alcer or remove a LOCKed file named
f , on the diskette in the specified or defsult drive, this command allows
such a change.

VERLIFY £ [,S8] [,0d] [,%v]

Example: VERIFY SAM

Performs a check that the information actuwally stored on the diskecte in
file f 4is self-consistent. (Technically, this is what happens: When
the file is created —— with SAVE, BSAVE or WRITE -- DOS calculates a
checksum byte for the contents of each output buffer and then stores that
byte with the buffer’s contents in a diskette sector. The VERIFY command
caleulates a new checksum byce for the actual contenta of each file
sector, and compares it with the checksum byte originally stored with that
sector.} If a file VERIFYs, no message is given; it"s safe to assume the
information on the diskette has been stored correctly. If a file does not
VERIFY, the message

1/0 ERROR

is presented. You may VERIFY any type of file.

154

MON [C] [.I] [.,0]

Examples: MON O
HON C, I, O

All disk commands and all information sent between the computer and the
disk are normally not displayed on the screen. This command allows you
to enable some or all of this display =- o helpful tool when debugging a
program. If € 4s specified then disk commends are displayed. If 1

is specified, then information being sent from the disk to the Apple, as
Apple’s input, will be displayed. If 0 d4s specified, then information

being sent to the disk from the Apple, as Apple’s putput, will be
displayed.

At least one of the three parometers sust be present, or MON is ignored.
The parameters may appear in any order, separated by commas. Thesa
parameters appear only in the commands MON and ROMON.

Kote: MON remains in effect until a NOMON command, a change of language
(FF or INT), a boot, or a restart (iD@G). Even RUNning a program won't
cancel a MON.

noMow [c] [,1] [.0]

Examples: ROMON C
ROMON I, €

The MON command eénmables you to display disk commands andfor informacion
aent between the computer and the disk: such information is not normally
displayed on the screen. The NOMON command allows you to disable some or
all of this display. The command

HOMOX C, I, O

returns the system to its usual, default state.

If C 1i= specified then disk commands are not displayed. If 1 is
specified, then information being sent from the disk to the Apple, as
Apple”s input, will not be displayed. If O is specified, then

information being sent to the disk from the Apple, as Apple’s output,
will not be displayed.

At least one of the three parameters must be present, or NOMON ia
ignored. The parameters may appear in any order, separated by commas.
These parameters appear only in the commands MON and ROMON.

HAXFILES n
Example: HAXFILES 6

n is an integer from 1 to 16 that specifies the nusber of files that can
be active at one time. When MAXFILES is executed, 595 bytes of memory
{called a file buffer) are reserved for each file. When you boot the
saystem, n defauvlts to 3, so that you will have 1785 bytes reserved for
file buffers and will be allowed a maximum of 3 files open simultaneocusly.

155

All DOS commands except PR#, IN# and MAXFILES require a file buffer. Thus
if you have MAXFILES 1, and one file is OPEN, an attempt to perform a DOS
command (such as CATALOG) will cause the message

MO BUFFERS AVAILABLE

to be displayed.

&

Use of MAXFILES moves HIMEM. This can erase Integer BASIC programs or
Applesoft srrings. Use MAXFILES before LOADIng and RUNMning a program-

See the discussion in Chapters 5 and 7 if MANFILES must be used from
within a program.

ACCESS COMMANDS

FP [,88) [,Dd] [,Vv]
Example: FP, D2

This command puts your aystem into Applesoft BASIC. Any Integer BASIC or
Applesoft program in memory is losat. If your computer contains the
Applesoft firmware card, DOS uses that source for the language, regardless
of the switch position on the card. If your system does not contain the
Applesoft firmware card, DO5 attempts to load and run the program named
APPLESOFT on the diskette in the specified or default drive.

To place the APPLESOFT program onto a newly initialized diskecte, firse
LOAD the APPLESOFT program from the Master Diskette, then (without RUNning
or LISTing the fila) SAVE APPLESOFT on an inictialized diskette. You sust
usic the name APPLESOFT for this file.

<

Do not use KUN APPLESOFT to change languages. Everything looks fine at
first, but DOS has not properly initialized cthe lanmguage. To avoid the
resultant mess, always use FP.

INT
Example: INT

This command puts the Apple into Integer BASIC. Any Integer BASIC or
Applesoft program in memory is lost.

CTRL-D (also written {CTRL}D)

Example: 18 D5=CHRS(4)
28 PRINT DS;"WRITE CHESS"

156

HH EEEEHEHEHEIEEOEEEHEN G DODEEEDEEDRN

Every character PRINTed out by the Apple is first examined by DOS before
it is sent on to the outside world. If the Apple PRINT& out a RETURM
character (most PRINT statements automatically end with a RETURN), and the
next character is a CTRL=-D, this is a message to DOS that subseguent
characters (until the next RETURN) are a DOS command. MHosc DOS commands
may be used from inside an Integer BASIC or Applesoft program. To do so,
PRINT a string consisting of CTRL-D followed by the desired DOS command.

The recommended way to do this is to first ereate a string DS consisting
only of a CTRL=-D, and then to use BASIC statements such as shown in the
example. Hote the uee of CHR3(4) to create D (this works only in
Applesoft; since the CHRS function is not offerred in Integer BASIC).
Instead, CTRL-D could have been typed inside quotation marks to create D%,
but in this case no character is shown between the quotation marks.

Every character sent out by the Apple s first examined by DOS before it
iz passed on to the outside world. If che Apple sends out a RETURN
character (most PRINT statements automatically end with a RETURN), and the
next character is a CTREL-D, this is a signal to DOS that subsequent
characters funtil the next RETURN) are a DOS command. A DOS command from
a program must appear in a PRINT statement whose first ouput character is
CTRL=D and whose output is separated from preceding and from succeeding
printed output by RETURN"s. For addicional information, see "Use of DOS
from within a Program", in Appendix G.

PRE &
Example: PRF &

Sends subsequent Apple output to the device controlled from slot # s ,
instead of to the TV screen. The command

PRI B

returns output to the TV screen. If the command is used from inside
programs, it must appear as a PRINTed DOS command, as shown below:

19 p5="": REM CTRL-D

2@ PRINT D5; "PRA 1"

If no device controller card is installed in slot # 8 , the system may
"hang" and you”ll have to press the RESET key to recover

Ing s
Example: INF &

Takes subsequent Apple input from the device controlled from slot # &
instead of from the Apple keyboard. The command

IN# @

resets the normal keyboard input. If the command is used from inside
programeg, it must appear in a PRINTed DO5 command, as shown below:

1@ D5="": REM CTRL=D

2@ PRINT D3; "IN# 1"

If no device controller card is installed in slot # & , the system may
"hang" and you®ll have to press the RESET key to recover -

167

CHAIN £ [,8s] [,Dd] [,Vv]
Example: CHATN PART TWO, DI, 57, V@

Used from within an Integer BASIC program, it loads and runs the Integer
BASIC program named [on the diskette in the specified or default drive,
but does not clear the wvalues of any variables. This means that program

f ecan operate on the results of the previous program, and can leave data
for any following program. You cannot CHAIN Applesoft programs using this
command: see the special procedure for Applesoft programs in Chapter 1§ or
Appendix G.

SEQUENTIAL TEXT FILE COMMANDS

OPEN £ [,8s] [,Dd] [,Wv]
Example: OPFEN SESAME, D2

Allocates a memory buffer of 595 bytes to the text file [; and prepares
the system to write or resd from the beginning of the file. This

command is used with the WRITE and READ commands to create and retrieve
sequential text files.

If there iz no file f on che diskette in the specified or default drive,
one is created. If a file named f is already OPEN, this command first
CLOSEs that file, before OPENing the specified fila.

CLOSE [f]
Example: CLOSE WINDOW

1f you were WRITEing, a CLOSE causes all remaining characters in the
output part of the file buffer to be sent to the diskette specified when
that file was OPENed. CLOSE f deallocates the buffer associated with the
sequential cext file f . If CLOSE is used without a file name, all OPEN
files will be closed, with the exception of the EXEC file. (There can
only be one EXEC file OPEN at any time. When another is implicitly
OPENed, the existing EXEC file, if any, is automatically closed)

If a program is interrupted by a CTRL-C while a text file is OPEN, it’s a
good idea to type

CLOSE

to keep any data from being lost.

&
Files that have been allocated by on OPEN statement must be CLOSEd.

Failure to CLOSE a {ile that was OPENed and written to (by & WRITE) can
result in loss of data.

158

WRITE £ [,Bhb]
Example: WRITE ADDRESS.DATA

After this copmand, PRINT statements send their output to the specified
file instead of to the Apple’s TV screen-. With the Byte parameter,
WRITEing begins at the b-th byte of the file (see Chapter B, page 69).
WRITE is cancelled by the printing of any DO5 command, or by an INFUT
statement. The null DOS command {ﬂimpl'y PRINTing a CTRL-D) will do.
WRITE must be issued in deferred-execution mode.

<

After this command all Apple output characters that would normally be
displayed on the screen are seat to the diskette {nstead. This includes
INPUT question-mark prompts, error messages, and other unwanced
charactars.

READ £ [,Bb]
Example: READ SESAME

After this command, INFUT stacesents (and GET scatements in Applesoft)
obtain their response characters from the specified sequential text file
instead of from the Apple’s keyboard. With the Byte parameter, READing
beging at the b=th byte of the file (see Chaprer 6, page 69).

INPUT ceauses characters to be READ from the sequential file one field at a
time. A Eleld consists of from | to 32767 characters, ending with a
RETURN character. However, because of the limited capacities of strings
and input/output buffers, it is very difficult to store and retrieve
fields of more than 255 characters.

READ is cancelled by the printing of any DO5 command. A null DDO5S command
(just PRINT a CTREL-D) will cancel READ. The READ command must be used in
deferred=exccut ion mode.

APPEND f [,8a] [,Dd] [,¥v]
Example: APPEND MORE INFD

This command opens the specified text file, but places the
position=in-the-file pointer to the end of the file. After this

command, the pnext character written into the file will follow the last
sequentially written character presently in the ffle. An APPEND must be
followed by a WRITE to the file of the same name. (APFEND must not be
followed by OPEN, because OFPEN will reset the position-in-the-file pointer
back to the file’s beginning.)

159

FOSITION £ [,Rpl

Example: POSITION ADDRESS.DATA, R2T7

POSITION places the position-in-the-file pointer at the beginning of the
p-th field following the one you're in. A field is a sequence of
characters terminated by a RETURK. Subsequent READs or WRITEs will

procesd from that point in the file [.

POSITION deals with a ralacive, not an absolute, position, since you count
fields forward from where you are in the file when the POSITION is
executed.

POSITION actually scans forward through the contents of the file,
character by character, looking for the p-th RETURN character. It then
places the position-in-the-file pointer at the first byte following the

p-th RETURN character. If, in this search, it finds any byte in which no

character has ever been stored, the message
END OF DATA

ie given. MNormally, this occurs vhen the p-th fleld ahead of the current
position in the file iz bevond the file's last entry.

EXEC £ [,Rp] [,Ss] ([,Dd] [,Vv]

Example: EXEC UTILITY

Similar to RUN, except that § is a text (data) file containing BASIC and

DOS commands as they would be issued from the keyboard. This allows you
to set up files that can control the Apple, much as wou would control the
Apple yourself.

There can only be one EXEC command in effect at a time. If the EXEC file
contains the immediate-execution command EXEC, the original EXEC file is

closed and the new EXEC file is opened and executed. If EXEC has OFENed a

file, the command

CLOSE

will not CLOSE the file being EXECecd. When an EXEC file has completed
all its commands, it CLOSEs itself and stops. If a file being EXEC’ed
contains a command to RUN any program, EXEC waicts patiently until the
program ende. Then the next command in the EXEC file is executed.

<

Howaver, if a program is running while an EXEC file is open, any INPUT
statement im the program will take the next field from the EXEC file as
the response, ignoring the keyboard. Worse yet, if that response is an
immediate-execution DOS command, the command will be executed before the
program continues.

<>

If you type CTRL-C to stop an Applesoft program that 1s running while an
EXEC file is still open, the remaining commands in the EXEC file will
usually not bhe executed.

160

If you specify the value of the R parameter, a position-in-the-file
pointer is placed at the beginning of the p-th field in the file, and EXEC
will scarc executing from this point In the file.

Ag with POSITION, the R parameter used with EXEC should be thought of as
the Relative-field position parameter. However, unlike POSITION, EXEC

alwavs counts fields from the beginning of your file, so p is always
relative to @. The other parameters work as usual.

1f you specify the value of the R parameter beyond the end of the file
you'll get an

END OF DATA

MESEARE .

RANDOM-ACCESS TEXT FILE COMMANDS

OFEN £, Lj [.8a] [,Dd] [,Vv]
Example: OPEN SESAME, L2

OPEN allocates a 595-byt file buffer to the rondomaccess text file f ,
and sete the record length to the number of bytes specified by j . The
numbar Jj must be in the range 1 to 32767; J defaulcs to l.

OPEN is used with the READ and WRITE commands to create and retrieve
random=access text files. Hote that the L (Length} parameter is not
optional: by definition, you must specify the record length of a
random—access text file. Each time you use a particular random-access
text file, vou must OPEN the file with the same L parameter valus. DOS
then uses that value to calculate the starcing posicion of any specified

record.

If there ig no file £, one is created.

CLOSE [f)
Example: CLOSE BOOK

If you ware WRITEing, a CLOSE causes all remaining characters in the
output part of the file buffer to be sent to the diskette in the drive
that was specified when the file was OPEMed. CLOSE de-allocates the
buffer assocliated with the random—access text file f . If CLOSE is used
withoout a file name, all OPEN filea will be closed, with the exception of
an EXEC file, if any.

If a program ia interrupted by a CTRL-C while a text file is OPEN, it"s a

good idea to type
CLOSE
to keep from losing data.

161

©;

Files that have been allocated by an OPEN statement must be CLOSEd.
Failure to CLOSE a file that was OPENed and written to (by a WRITE) can
result in loss of data.

WRITE £ [,Rr] [,Bb]
Example: WRITE ADDRESS.DATA, R3

After this atatement, FRINT statements send their output to the specified
file instead of to the Apple’s TV screen. WRITE is cancelled by the
printing of any D05 command, or by an INPUT command. The null DOS command
(simply PRINTing & CTRL-D) will stop & WRITE with & minimum of effort.
WRITE can be used only in deferred-excecution PRINT statements.

Tha R (Record) parameter causes the WRITE to begin ar the firsr byte of
the r=th record, where each record contains the number of bytes, J .
gpecified by the L parameter given with OPEN. r defawlts to @. If
the B parameter is specified, the WRITE will begin at the b-th byte of
the r=th record in the file.

<>

Afrer the WRITE statement, all Apple output characters that would
normally be displayed on the screen are sent to the diskette instead.
This includes INPUT question-mark prompts, error messages, and other
unwanted characters.

READ £ [,Rr] [,Bb]
Example: READ SESAME,R3,B30

After this stacemenc, INPUT scatements (and GET stacements in Applesoft)
obtain their response characters from the specified roandom-access text
file instead of from the Apple’s keyboard. INPUT causes characters to be
READ from the random-access file's current record, one field at a time.

A field can be from 1 to 32767 characters, ending with s RETURN character.
However, no record should be more than Jj characters in lemgth, where J
is the record length specified when the file was OPENed.

The R (Record) parameter causes the READ to begin at the first byte of the
r=th record, where each record contains the number of bytes, J
gpecified by the L parameter given with OPEN. r defanlts to @. If
the B parameter is spacifiad, the READ will begin at the b-th byte of
the r=th record in the file.

BEAD is cancelled by the printing of any DOS command. A null DOS command
{just PRINT a CTRL-D) will cancel READ.

162

MACHINE-LANGUAGE FILE COMMANDS

BSAVE £, Ao, LI [:8s] [.Dd] [.V¥vl

Examples: BSAVE PICTURE, Al6384, LB192
BSAVE PICTURE, AS4gdd, L5z2p@q

Creates a file named [, and stores the contents of a segment of the
APPLE I1°s memory. The segment is specified by the starting address a
and the number of bytes to he stored | .

The examples shown sbove store a high-resolution picture, from the second
high-resclution picture area. They are operationally identical: the
second example just uses hexadecimal notation for the parameters.

BLOAD £ [,As] [,5s] [,Dd] [,Vv]

Examplea: BLOAD PICTURE, ABL92
BLOAD PICTURE, AS2d¢@

If a is not specified, then BLOAD places the specified file in Apple’s
memory beginning at the starting location of the memory area that was
originally BSAVEd. If & 18 specified, then the data is placed in
Apple”s memory beginning at address a . HNote that & machine-language
program may no longer be executable if so moved.

Assume that a a high-resclution graphics pilcture has been BSAVEd on a
diskerce under the file name PICTURE. Then the first example shoun above
would place the picture into the first high-resolution picture area, which
atarts at memory location 8192 (decimal). The second example is
equivalent: the address is shown in hexadecimal, as indicated by the gt
before the 2009.

e

Either example would clobber any version of Applesoft that is not in
firmware.

BRUN £ [,Aa] [,S5s] (,Dd] [,W]
Example: BRUN SUPER, ASCH#A, V75

BLOADs the file f dinto Apple”s memory beginning at location & . If the
A parameter is omitted, the file is BLOADed starting at the same
location from which it was BSAVEd. Once BLOADed, the file (which should

be a machine-language program) is started by a machine-language jump (JMP)
to location a .

163

r »
CE R B R RN EE NN NN NN NN NN

164

166
166
166
166
167
167
169
169
17@
171
171

APPENDIX G

SUMMARY OF DOS
PROCEDURES

Booting DOS

INITializing a Diskette

Recovering from Accidental RESETs

Use of DOS from within a Program

Creating a Turnkey System

Creating and Retrieving Sequential Text Files
Adding Data to a Sequential Text File
Controlling the Apple wia a Sequential Text File
Creating and Retrieving Random-Access Text Files
Copying a Text File

Chaining in Applesoft

165

This appendix contains summaries of the main procedures used in DOS. On
the preceding page these are listed with the page numbers on which they
APPERTs

BOOTING DOS
Replace "a" by the slot mumber in which the disk controller is located.
Frompt To booc DOS,
Character Language type
> Integer BASIC PR#s or IN#s
] Applesoft PR#s or IH#s
* Monitor s{CTRL}E or s{CTRL}P

INITIALIZING A DISKETTE

To INITialize & slave (memory dependent) diskette:

1} Boot DOS

2) Insert a blank diskette into the disk drive

1) Type in a greeting program, ec.g.
1# PRINT "32K SLAVE DISKETTE INITIALIZED 5 MAY 8@"
2§ ERD

&) Assuming you choose to name the greeting program "HELLOY,
type the command
INIT HELLOD

3) After the IN USE light on the disk drive goes out, remove
the diskette and label ic.

To create a master (memory independent) diskette, see the instructions in
Chapter 5 for use of the UFDATE 3.2 program.

RECOVERING FROM ACCIDENTAL RESETS

If DOS has been booted and then the RESET key is accidentally pressed,
type

anga

{that“s the numeral zerc after the D) to get back inte the BASIC you left
with your program intact.

USE OF DOS FROM WITHIN A PROGRAM

D05 commands may be issued from within a program by PRINTing CTRL-D then
the command. First create a string DS which consists only of CTRL-D.

In Applesoft, D5 may be created by the command

D§ = CHRE(4)
since CTRL-D is the character whose ASCIT code is 4.

166

In either BASIC, DS may be defined by typing

D$-”

then holding down the CTEL key while typing the leccer D, and then cyping
the closing gquote. Control characters such as CTRL-D aren’t displayed, so

what you®ll see is
DS =

This Applesofr program displays the CATALOG when RUN:
REmM GREETING PRUGRAM
8 DF = CHRE (4): REM LCTREL-L
! FEINT DF: "CATALOG"
Only one DOS command may be contained in a single PRINT scatement. The
PRINT statement’s quoted contents must begin with a CTRL-D and end with
the DOS command. The CTRL-D must be preceded by a RETURN (sent
automatically at the end of most PRINT statements).

These commands should only be used in deferréed-execution mode (from within
a program), appearing after CTRL=D in @ PRINT statement:
OFPEN AFPPEND READ WRITE POSITION

The commands INIT and MAXFILES are best used only in immediate-execution
mode (not from within a program).

Other DOS commands may be used either in immediate-execution mode, or Erom
within a program where they appear sfter a CTRL=D in a PRINT statement.

CREATING A TURNKEY SYSTEM

To make a diskecte that runs a certain program each time the diskecce is
hooted == in the example we will uee the program COLOR DEMO == use the
following procedure:
1) INITialire a blank diskecte, using the name HELLD for the

greeting program.
2) Place a disk containing the COLOR DEMOS program in drive,

and type

RIN COLOR DEMOS

Once you're satisfied the program RUNs correctly, return

to BABIC.
3) Put the newly INITialized diskette into your drive and type

SAVE HELLO

to replace the old greecing program by the COLOR DEMOS

program.

CREATING AND RETRIEVING SEQUENTIAL TEXT FILES

When creating s sequential cext file, an OFEN must precede a WRITE; once a
WRITE is execuced, any subsequent PRINT commands send all characters to
the diskette. CLOSE the file when you're done. A WRITE command is
cancelled by an INPFUT or the use of any D05 command inm a FRINT statement
== even just PRINTing CTRL-D will do.

167

This Applesoft program creates a sequential text file pamed SAMPLE whose
first thirteen fields contain three strings and the integers 1 through 1§:

8 PREM MAKE SAMPLE

18 D§ = CHR$ (4): REM CTRL-D
28 PRINT D#; "OPEN SAMFLE*

38 PRINT DS, "DELETE SAMPLE"

48 PRINT D#:"OPEN SAMPLE"

58 PRINT D#$: "WRITE SAMPLE"

68 PRINT "HI HO": PRINT "HI HD"
78 PRINT "OFF TO THE DISK WE GO"
88 FOR J =1 TO 1@

99 PRINT J: NEXT J

118 PRINT D% "CLOSE SAMPLE"

©)

If you OPEN & file that already exists and then WRITE to it, you will
overwrite part of the original file.

This Applesoft program retrieves the file SAMPLE described sbove, one
field at a time. If you wish to see what is being READ from the disk, the
command

MON T

will cause input from the disk to be diasplayed.

5 REM RETRIEVE SAMPLE
18 Df = CHRES$ (4>. REM CHRS{4)
15 CTRL-D

28 PPRINT D¥: "OPEN SAMPLE"

ke PRINT D%: "RERD SAMFLE"

48 IHPUT A%, Bf. CH

S8 FOR 1 =1 TO 18

&8 INFUT W

78 HNEMT 1

g8 PRINT D¥: “"CLOSE SAMPLE"
An OPEN must precede a READ. Once a READ is executed, any subscquent
INPUT statements (in Applesoft, GETa also) obtain their response

characters from the diskette instead of from the Apple”s keyboard. CLOSE
the file when you're done.

A READ is cancelled by PRINTing CTRL-D, whether or not ic’s foellowed by a
DOS command.

168

S Es e e D RDUEE @

ADDING DATA TO A SEQUENTIAL TEXT FILE

This Applesoft program adds the two atrings "TEST 1" and "AND HOW FOR TEST
2" to the end of a sequential text file called SAMPLE. Each string is in
an additional field of the file.

5 REM AFFEND SAMPLE

10 Df = CHRE (43: REM CTRL=D
FRINT D3: “AFFEND SAMFLE
PRINT D$; "WRITE SAMPLE"
FRINT “TEST

4

%8 PRINT "AND HOW FOR TEST 2¢

BB PRINT D “CLOSE SAMPLE®

CONTROLLING THE APPLE VIA A SEQUENTIAL TEXT FILE

When RUN, this Applesoft program creates a text file named DOIT containing
the commands

LIST 2¢,5¢

RUN HELLO
CATALOG
S5 REM
16 D -L
280 PRI
ZF PRIN
46 PRI
S8 PRINT "RUM HELLO®
G = “CATHL G
78 PRINT D#%: "CLOSE DOIT™

Once the text file DDIT is created, the command
EXEC DOIT

will cause the commands in the file DOIT to be executed one by one, just
as if they’'d been typed in from the keyboard.

169

CREATING AND RETRIEVING RANDOM-ACCESS TEXT FILES

This Applesoft program creates a random-access text file named RA-FILE,
whose records are cach 39 bytes long. Then it WRITEs the string "NAME
ADDRESS" followed by the record number, into records 12 through 15 of the
file. In lines 7@ and 8@, record mumber 13 is changed to contain the
string "DOS VERSION 3.2".

-

3 REM MAKE RA-FILE

18 D% = CHRT (4): REM CTRL-D
28- PRINT D%; "OFEN EA-FILE"

38 PRINT D% "DELETE RA-FILE"

48 PRINT D$; “OFEN FR-FILE: L3ZA8"“
98 FOR T = 12 TO 415

68 PRINT D#¥:"WRITE RA-FILE. R":1

78 PRINT "NAME ADDRESS “il
88 NEXT I
88 PRINT D$: "WRITE RA-FILE:. R13"

188 PRINT “DOS YERSION 3. 2¢
118 PERINT D% "CLOSE RA-FILE"

This Applesoft program READS records 12 through 15 of the random—access
text file RA-FILE. WNote that you must specify each record before READing
it in line 49. Line &0 examines the three leftmost characters of the
input string A3, taken from each record. If those three charactérs are
"N08", the message "RECORD r WAS CHANGED." {is FRINTed, and the search
continues.

5 REM RETRIEVE RA-FILE

i3 D¥ = CHRS <4>: REM CTRL-D
28 PRINT D%:; "OFEN RFR-FILE. Lzg"
3B FOR J = 412 70 15

48 PRINT D% "RERD RA-FILE: R":J
8 INPUT RS

68 IF LEFT# <RA¥% I = "DD5S" THEN
PRINT "RECORD "; J:" WAS CHA
NGED, *

78 NEXT J

88 PRINT D#¥: "CLOSE RA-FILE"

170

COPYING A TEXT FILE

Moving a BASIC or a binary program file to another diskette is no problem:
just LOAD or BLOAD the file’s contents into the Apple, and then SAVE or
BSAVE those contents back onto the other diskette. However, there is no
such simple way to move a text file onto another diskette (aside from
COPYing the entire diskette). In general, & program must be written for
the specific text file to be moved, which does the following:

1. READs each field of the existing text file into an
Applesoft string array.

2. WRITES each element of the string array into a field
of the new text file on the other diskette.

For instance, cthe previous Applesoft program RETRIEVE RA-FILE can easily
be modificed to do step 1. Just add these two lines:

7 DIM AS{15)

5@ INPUT AS(J)

And that modified program can easily be modified to do step 2: jusc change
READ (line 4@) into WRITE and change INPUT (line 5@) into PRINT. You
might also wish to delete line 6@, to avoid the PRINTing of a second field
inte record 13.

CHAINING IN APPLESOFT

To RUN a series of Applesoft programs without erasing earlier values of
variables and arrays
1} Place the System Master diskette in your drive and
BLOAD CHAIN, A2056 { BLOAD CHAIN, Al2296
in diskette Applesoft)
2) Place in the drive the diskette vhich will have the chained
programs and use the command
BSAVE CHAIN, A2856, L456 { BSAVE CHAIN, A12296, L4356
in disketce Applesofr)
to put the machine language CHAIN program onto the diskette.
3) Suppose you wish program PART ONE to chain to the program
PART TWO. First, make sure the binary file CHAIN is on the
same disketce with the program PART TWO (see steps 1 and 2,
above). Then simply insert these two
lines as the last two lines to be executed in the PART ONE program:
PRINT CHRS(4); "BLOAD CHAIN, AS52@"
CALL SZA"PART TWO"

Ho space or other character may be becween the @ and the "
in the CALL command.

171

i

INDICES

174 General Index

178 Program Index

178 Message Index

Inside Back Cover: Index to DOS Command Summaries

2 Index to DOS Procedure Summaries

173

GENERAL INDEX

Also see the Program Index and the Message Index at the end of this

section, on page 178.

Inside the manual"s back cover is the Command

Summary Index and the Procedure Susmary Index.

.A-

a: see A (address) parameter

A-register 94-95

A (address) parameter
with BLOAD 93, 163
with BRUN 93, 153
with BSAVE 92, 163

absolute byte parameter
125

absolute-field position

(R) parameter 79
address field 94
address (A) parameter 92, 15Q
analog board achematics 146
APPERD 66-67, 159
hpp;l! IT BASIC Programming Manual
1
Applesoft BASIC 28-31, 156
booting from 11
firmware BOM card 107
on diskette (RAM) 187,171
Applesoft IT BASIC Programming
Reference Manual 1@, 48
APPLESOFT program 29, 187

92, 150

69-70

b: see B (byte) parameter

B (byte) parameter 69, 158
with READ AD-71, B9
with WRITE &9-71, &9

backing up 37-38

binary files 92

BLOAD 93, 163

booting 11=12, 166

BRUN 45, 93, 163

BSAVE 92,163

byte (B) parameter &9-71, 89, 150

-c-

C, contral 18, 39

€ {command) parameter
with MON 42, 155
with HOMON 42, 155

cable 2-&

CALL -151 2%

174

CALL -868 43
casgette tape recorder
CATALOG 16, 152
CHAIN 186, 158
chaining in Applesoft
171
in Integer BASLC
CHRS(4) 3@, 166-1K7
CLOSE 48
random-access files 88, l6l-162
sequential files 58-59, 158

command (C) paramster 42

15, 25

1@6-107,

196, 158

rn?;rnl character 17, 3@, 148,
1
controller card 2-3, 22
CONTACT 2
COPY program 38=4§
copying
digskertes 38-49
programs 15=16
text files 171
CIRL {(control) 11, 14B
CTRL-C 18
CTRL-D 29-31, 156-157, 166-167
CTRL-E 11, 1§3
CTRL-F 11, 143
=D-

d: see D (drive)} parameter
ng 3P, 166-1687
0, contral 29=31, 156=157,
166=167
D {drive) parameter
data field 94
data file: see sequential and
random-access text files
debugging 42, 44, 154-=155
default values 22
deferred-execution mode 29-31, 48
DELETE 18, 26, 134, 154
device characteristics table
94-98
disk drive
care 5-7
installation 2-4
multiple drives 5, 22
troubleshooting 12

22-23, 149

diskette 5=7
CATALOG 16, 152
format 94, 124=-137
INITializing 13-14, 18, 166
storage 124
volume number 23
PISK FULL 128, 134, 178
display options: aee MON, NOMON
DoS (Disk Operating System)
command summaries 11@-111,
14B=-16%, inside back cover
commands [rom within a program
31, 166-167
entry points 144
1/0 registers 1@1-193, 194
memory usage 14@=142
messages 114-122
procedure summaries
inside back cover
drive option: see drive parameter
drive (D) parameter 22

165-171,

duplicating disks 38-4Q
=E=-
END DF DATA 117, 178

entry points to DOS 144

erasing files 18, 26, 154
error codes 1l4=113

error messages 114-122, 178
ESC {escape) 11, 149

EXEC T4-79, l16@-161, 169

-F-

field 51, 124
field (R) parameter
with EXEC 79, l6@-161
with POSITION 67-69, 16§
file 16
data file: see sequential and
random-access text files
EXEC 75
machine language 92-93
names 16-17, 25, 151
random=access text file B82-89
asequential text file &49=71
text file 438
file buffer &3, 124
FILE LOCKED 12§, 178
FILE NOT FOUND 118, 178
FILE TYPE MISMATCH 121, 178
floating point BASIC:
see Applesoft BASIC
FP 28-29, 156

175

={F=
GET with text files 51
grecting program 13-14

renaming 45

HELLD program 13
hexadecimal notation 24

HIMEM: 12, 141-142
=)=

I/O devices 19§
I/0 ERROR 119, 178

I (input) parameter &2
immediate-execut ion mode
IHd 11, lP@-1@2, 157
indices
command summaries:
inside back cover
general 174-177
message 178
procedure summaries:
inside back cover
program 178
INIT (INITialize)
166
INPUT with text files 51
Input/Output control Block:
see IOB
input reglsters
DpOS 1@1, 14
Monitor 1§41, 1§83
input (I} parameter 42
installing the DISK I1 2-4&
INT 28-29, 156
Integer BASIC 28-29, 156
booting from 11
interface circult schematics 145
IN USE lighe 7, 18
I0B 94-98

31-48

13-14, 31, 151,

=)=

j: see L (lengcth) paramecer
JMP (jump)} 93

e

kick: gee booting

-L-
LANCUAGE MOT AVAILABLE 115, 178
L (length) parameter

with BSAVE 92, 158, 163

with OPEN 88, 126, 15¢, 151
langth (L) parameter

of binary file 92, 150

of record 8B, 126, 158
LOAD 15-16, 25-26, 153
LOCK 135, 154

M-

machine-language files

master diskettes &4-46

MAXFILES 31, 43-4&, 78, 135-156

memory requiremencs 13, 14@-142

memory usage and map laf-141

message index 178

MON 42-43, 58, 155

monitor 11, 1B, 29, 166

Moniter I/0 registers 1@1-1¢3,
185

92-83, 163

=M=

NO BUFFERS AVAILABLE
HOMON 42-43, 155
HOT DIRECT COMMAWD 122, 178
notation 24, 148-15@

121, 178

-o-

0 (output) paramecer
with MON 42
wich ROMON &2

ONERR GOTO codes

OFEN 48
random-access files 88, 161
sequential files 358-39, 158

output registers
nos 1@, 194
Monitor 1@1, 183

overwriting 63-64, 69

114-122

-P-

p: see relactive-fiald position

(R} parameter
P, control 11, 193

176

POSITION 66-69, 125, 136, 158,
16@-161

ERF 11, 1@@-182, 157

PRINT (with CTRL-D)} 29-31, 5¢

program index 178

PROGRAM TOO LARGE 29, 122, 178

prompt characters 11, 36

-Q-

quotation marks 3@

R parameter
with EXEC 79, 15@
with POSITION &7-89, 125, 158
wich READ &7-69, 150
with WRITE 67-68, 150
random-gccess text file
161=162
creating, retrieving B82-85, 17¢
differences from sequential B2
sample programs B82-87
RANGE ERROR 116, 178
READ
with random—access text files
B8-89, 137, 162, 17§
with sequential text files
"‘9"'?[!]36- 15‘99 l&?-l&g
read or write a track
or sector (RWIS) 94-98
record B2-B6, 126, 158
record number (R) parameter 82-86
relative=fiald position
(R) parameter 67-69
REMAME 17, 153
RESET 11, 18, 149, 166
RETUBN 11, 12, 14%
RETURN character 51
ribbon cable 2=4
RUN 25-26, 153
RWIS subroutine 94-98

82-89,

-S-

s: see 5 (slot) parameter

% (slot) parameter 22, 149

SAVE 15, 25-26, 152

schematics 145-146

aector 16, 94=98, 124, 127-135
allocation order 135

sequential text file &9=71 =

greltinu and retrieving &9-71, -X- ¥- -1
167=168

EXEC 76, 169 Y-regiscer 94-96
sample programs &9=71

slave diskecces 13, 44, 141

slocs 3-4

slot (5) parameter 22, 149

syntax 24, 148-15@

SYNTAX ERROR 12§, 178

System Master diskette 1@=14

J-

text file 4B=-49, 171
text file, random=access:

see random-access text file
text file, sequential:

see sequential cext file
THACE &4
track allocation order 135
track bit map 124, 133-134
track/sector 1ist 124, 128-129
tracks 94-98, 124
turnkey system 34-35; 167

UNLOCE 33, 134
unpacking 2
UPDATE 3.2 program G&44=46

&7

v: see V (volume) parameter
¥V (volume) parameter 23-24, 149
VERIFY 35-36, 154
VOLUME MISMATCH 118-119, 178
volume number:
aea volume paramater
volume (¥) parameter 23-24, 149
VTOC (volume table of concents)
132-133

W-

WRITE
with random=-access text files
33-39. IZE‘. IEZ
with sequential cexc files
49=T1, 124=125, 159
write protecting 356-37
WRITE FROTECTED 116=117, 178

177

DOS MESSAGE INDEX

Appendix B, pages ll4-122, gives the codes needed to use Applesoft’s
ONERR GOTO command to create Applesoft error=handling routines for DOS

errora. Summaries tell when each message presented by DOS is likely
to occur. Each summary tells what to do when the message is received.

HESSAGE PAGES

DISKE FULL 129

END OF DATA 53, 58, 67, &8, 7@, 79, 85,
117-118, 168, 161

FILE LOCKED 15, 67, 12¢

FILE ROT FOUND 17, 18, 26, 36, &6, 59, 118, 154

FILE TYPE MISMATCH 15, 48, 121, 152

1/0 ERROR 22, 26, 36, 119, 154

LANGUAGE HWOT AVAILABLE 28, 115, 153

HO BUFFERS AVATLABLE 43, 121, 156

HOT DIRECT COMMAND 48, 122

PROGRAM TOO LARGE 29, 122

RANGE ERROR 92, 116

SYNTAX ERROR 18, 26, 28, 79, 92, 120

VOLUME MISMATCH 231, 118=119

WRITE PROTECTED a7, ll1b=117

PROGRAM INDEX

0f the programs listed below, CAPTURE and the two greeting programs are
discussed only in the manual. The remaining listed programs are also on
the System Master diskette. Thias list does not include every program on
the Bystem Master diskette, mor every program discussed in the manual.

FROGRAM DESCRIFPTION PAGES
Greacing (HELLO) program RUNe when disk is booted 13=14
Another greeting program shows CATALOG when disk is booted 29-30
COLOR DIEMO displays Apple colors on color TV 34=-35
ANTMALS builds a guessing-game 7

COPY uses ? drives to copy diskettes 38-40
UPDATE 3.2 converts alave diskette to master 44-46
MAKE TEXT creates a sequentisl text file fhl=h3
RETRIEVE TEXT rectrieves a sequential text file 65-B6
EXEC DEMD demonatrates wse of EXEC command T4=75
CAPTURE captures a program as a text file 76-77
RANDOM and APPLE PROMS shows use of random-access file Bh~-88
CHATIN allows chaining in Applesoft 1@86-1@7

178

INDEX TO DOS COMMAND SUMMARIES

Command ~ Page Command
APPEND 159 MAXFILES
BLOAD 163 MOR

BRUN 163 HOMOR
BSAVE 163 OPEN
CATALOG 152

CHATH 158 POSITION
CLOSE 158 (sequential files) FR#

161 (random=access files) READ
CTRL-D 156

DELETE 154 RERAME
EXEC 160 RUN

FP 156 SAVE
IH# 157 UHLOCK
INIT 151 VERIFY
INT 156 WRITE
LOAD 153

LOCK 154

Page

155

155

155

158 (sequential files)
16l (random-access files)
l6¢

157

159 (sequential files)
162 (random-access [iles)
133

153

152

154

154

159 (sequential files)
162 (random-access files)

INDEX TO DOS PROCEDURE SUMMARIES

Frocedure

Booting DOS

INITializing a Diskette

Recovering from Accidental RESETs

Use of DOS from within a Program

Creating a Turnkey System

Creating and Retrieving Sequential Text Files
Adding Data to a Sequential Text File
Controlling the Apple via a Sequential Text File
Creating and Recrieving Random-Access Text Files
Copying a Text File onto Another Diskette
Chaining in Applesoft

Converting Machine=Language Programs to BASIC
Secting MAXFILES within an Integer BASIC Program

IDOS VERSION 3.2
QUICK REFERENCE CARD

On this card, POS commands are grouped inke
hese 5 cacegories:

Housekeeping compands:

ENIT LOAD DELETE VERIFY MAXFILES
CATALOG RON LOCKE HoN

SAVE RENAME WLOCE NOMON

Access Cosmands:

FP INT FR# INF CHATN
Seguential Text Flle Commands:

OPEHR READ AFPPEND EEEC
CLOSE WRITE POSTTION
Random—iccess Text File Commands:

DPESR CLOSE REATY WRITE
Machine-Lanpuage File Commands:

BLJAD BRLUN BSAVE

A "parameter” is a capital letter, usuvally
FEolloved by & nusber (shown hers by a
Lower-case letter), which gives additiomal
i nformation for executing a command.
Multiple paramerers may appear im any
oxrder, but must be scparated from each
orther by a comma. A parameter shown in
square brackets [like this] is optional.

A File pape (shown here by X) oust immedi-
ately faollew its command word. File mames
masst beglan with a letter; enly the first
3¢ characters are used. A comma separates
a file nspe from a following paramster.

CTEL-D (type D while holdimg dowm CTEL key)
is used In PRINT statessnts to ipdicate the
s tart of a deferred-execution DOS command.
Imteger BASIC example:

i# D§="": HEM "CTRL-D"

I FPRINT D§; "CATALOG™
Applesoft BASIC example:

If DS = CHRS(4) : REM CTRL-D

2f PRINT D§; “CATALOG"

TEkwe tere "BASIC" alope is used to meam either

Lxteger BASIC or Applesoft BASIC. The term
"file" alone means aoy type of diskette file.

COMMAND PARAMETERS

An error message is glven if a DOS command
quantity is voo large or coo small-

ALL FILES

Paramerter As shown Hin Max
Sloc 58 g1 &7
Drive S0 (5]] D2
Voluse] L V254

* Using W is like omitting the Ww parameter:
the diskettes volume mumber is igmored.
Smallest volume numher INTT will actually
assign to a diskette is 1.

SEQUENTIAL TEXT FILES

Parapeter As showm Min Max
Byte Bb B B32767
Ralaztive Fleld *= Ry R3 RI2T6T

* With EXEC, always relatcive to field f#i.

RAMDOM-ACCESS TEXT FILES

Parameter As shown Min Hax
Record Lemgth WL Ll L3Z767
Becord Number R (.1 R3I2757
BINARY FILES

Parabeter As shown Min MHam
Starting Address yha AR ABS535
Bumber of Bytes L3 Ll AIZI6T
DOS COMMARDS

Command Juantity As shown MHin Max
PRF slot PEF & FRéP FRET
In§ slot INE & 580 THET7

MAXFILES £ille buffers MAXFILES m =1 a=lb

Commands use Slot or Drive paramcters only
when changing to a different Slot or Drive.

1f 2 command omits the Volume parsmeter or
uses Vi , the diskerre’s volume musber iz
ignored. A command that uwses the Volume
parameter Wv will oot be executed unless
the diskette®s volume pumber i5 v .

HOUSEKEEPING COMMANDS

INIT X [,w] [,5s] [,.Dd]

Initialires a blank diskette vo form a slave
diskette. Assiges greeting program name X
agd voluse pumber v (1F specified). SAVEs
the BASIC progra=m corrently inm memory, under
file name X .

CATALOG [,Ss] [,Dd]

Displays volume nusber amd all files om a
diskette, with esch Files type and sector
length. % jndicates a LOCKed f£ile.

Ixpe Description {How created)
1 Integer BASIC program file [SAVE)
A Applesoft BASIC program File (SAVE)
T Text File (OPEN, then WRITE)
B Binary memory-image file (BSAVE)

SAYE X |[,S8s] [,0d] [,W]

Stores curremt BASIC program cnto diskette,
under file name X . Owverwrices any previous
file of same type and name, without warning.

Loap X [,8s] [,Bd]l [,Vv]

Loads BASIC program file X dnto memory.
after clearing mesory and (if mecessary)
changing bto the correct BASIC.

R X [,Ss] (,Dd] [.¥w]
LDADs BASIC program file X
then ElMs the program.

RERAME X, ¥ [,S5s] [,Dd] [,¥w]
Changes a diskette File’s name Erom X to ¥

DELETE X [,5s] [.Dd] [,%w]
Erases file K from the diskette.

LOCE X [,8s) [,Dd] [,¥w]
Locks file X against accidental change or
deletion., LOCKed file shown in CATALOG by &

UKLOCE X [,5s] [,Dd] [,¥w]
Unlocks previously LODEed file X
te allow change or deletion.

VERIFY X [,Ss] [.pd] [,Vw]
Checks file X for internal consistency.

If X was saved without error, no mEsSsape
is giwven.

MON [.,C] [.1] (.0

Causes display of disk Commands { C),
Ipput from the disk (I), and Ducput

to the disk [0). With no parameters,
MON i=s ipnored.

RoMOoN [.C1 [,XI) [,0]

Cancels display of disk Commands { C),
Ioput from the disk (I), and Outpur
to the disk (0). With no parameters,
MOMON is ignored.

MAXFILES m

Reserves n file buffers for disk inpur and
output (booting reserves 3 file buffers).
Use before LOADIng or ElMning a pProgram.

ACCESS COMMANDS

Fr [,5s] ([,Dd] [,¥v]
Puts system imto Applesofr BASIC,
erasing any program in memory.

INT
Puts system imtoe Integer BASIC,
erasing any progras in memory.

FRF s

Sends swhsequent output to slot s . Boors
disk If slot s contains disk contraoller
card. PR# sends owtpur to TV screenm again.

INF s

Takes subsequent input from slot s . Beoks
disk if slot 8 costains disk controller
card. IR#@ takes ipput From keyboard again.

CHAIN Y [,.58] [,Dd] [,Vw]

BliMs Integer BASIC program file ¥ , but does
mot clear wariables developed by previous
Integer BASIC program.

SEQUENTIAL TEXT FILE COMMANDS

OFEM X [.8s] [,Dd] [,Wv]

Opens or creates sequential text file X ,
allocates ome file buffer and prepares to
WRITE or EEAD from begimming of File.

CLOSE [KX]

Completes WRITE X, if necessary, and de-
allocates file buffer assigned to rext File
X . Without file name, CLOSEs all OFEN files
(except an EXEC file).

WRITE X [,Bb]

Subsequent PEINTs send characters to
sequential texe file X . WRITEing begins
at current File position or (if specified)
at byte b . Cancelled by any DOS comsand.

READ X [,Eb]

Subsequent INFUTs and GETs take response
characters from sequential temt file X .
EEADing begins at current file positiom or
(if specified) at byte b . INPUT response
is cme Field (all characters to next
EETUEM). Cancelled by amy DS command.

AFPEND X [,5s] [.Dd) [.Wv]

Opens existing sequential text file X ,
similar to OFEM, but prepares to WRITE
at the end of the file.

POSITION X, Rp

In OPEN sequential text file X , subsequent
READ or WRITE will proceed from p-th field
following current File position.

EXEC X [,Rpl] [,5s1 ([,Bd] {,Ww]

Executes successive flelds in sequencial
cext file X as if typed at keyboard.
With Rp paraseter, executiom beglns with
p-th Ffield. Fields may inclode nushered
BASIC program limes and direct-execution
BASIC or DOS commamds vo control the Apple.

RANDOM-ACCESS TEXT FILE
COMMANDS

OPEN X, L} [.5s] [.bd] [,ww]

Opens or creates random-access text file X
allocates ome file buffer, and defimes record
length as § bwtes. Prepares to WEITE or READ
from beginming of Record #. Sa=me Length param—
eter sust be used each time file X Is OPEMed.

CLOSE (X1 1,Ss)] [,Bd] [.,¥w]

Compleres WRITE X, if necessary, and de-
allecates file buffer assigned to text File

X . Without file name, CLOSEs all OFEN files.

WRITE K [.Ec] [,Bb]

Subsequent PRINTs send characters to random-
mccess text file X « With mo parameters,
WRITEing begins at current file positiom.
With ®r parameter alcope, WRITEing starts at
byte # aof Record r « With &b paraseter,

WRITE starts at byte b of current or spec-
ified Record. Cancelled by any POS command.

READ X [,Rr] [,Bk]

Subsequwent INPUTs and GETs take response
characters froe randos-access text file X .
With no parameters, READimg starts st cur-
rent file position. With Rr parameter
alone, READIng starts at byte § of Becord r.
With Bk parameter, READINg starts at bybe
b of current or specified Record. INPUT
response is one field (all characters to
next EETURN) . Cancelled by any DOS command.

MACHINE-LANGUAGHE FILE
COMMANDS

BSAVE X, Aa, L [,5s] [,Dd] [,Vw]
Stores on diskecte, under file name X ,
the contents of j memory bytes starting
at address a .

ELOAD K [,Aa] [,S5s] [,Dd] [,¥w]

Loads binary file X ioto same meBOTY
locations from which file was BSAVEd or
(if specifisd) starting at address a .

BEEN X |[,aa] [,5s] [,Dd] 0,Vwl
BLOADs himary file K , then jumps [RMP)
to loaded file”s first pesory address.

o —

10260 Bandley Drive
Cupertino, Califomic 954
[408) 996400

